Part of the  

Solid State Technology

  Network

About  |  Contact

Posts Tagged ‘Leti’

Next Page »

IEEE SOI Conference (Oct., Monterey) Adds 3D, Sub Vt

Wednesday, September 18th, 2013

ASN Guest Contributor Jean-Luc PELLOIE, Director of SOI Technology and Fellow at ARM is this year’s General Chair of the IEEE S3S Conference. Here he invites you to participate in this important event.

~~

The 2013 IEEE S3S conference, founded upon the co-location of The IEEE International SOI Conference and the IEEE Subthreshold Microelectronics Conference, is completed by an additional track on 3D Integration.

The advance program, with the incredibly rich content proposed within and around this conference, is now available. The conference revolves around an appropriate mix of high level contributed talks from leading industries and research groups, and invited talks from world-renowned experts. The complete list of posters and presentations can be seen in the technical program.

(Photo credit: 2013 Hyatt Regency Monterey Hotel and Spa)

This year some additional features have been added, including a joint session about RF CMOS as well as one about 3D integration.  Check the list of participants on those links, and you will see that major players in the field are joining us!

Our usual rump session will let us debate what the 7 nm node and beyond will look like, based on the vision presented by our high profile panelists.

There will be 2 short courses this year, and 2 fundamentals classes.  Those educational tracks are available to you even if you do not register for the full conference.

On Monday October 7th, you can attend the short course on “14nm Node Design and Methodology for Migration to a New Transistor Technology“, that covers specificities of 14nm design stemming from the migration of classical bulk to bulk to FinFET/FDSOI technologies..

(Photo Credit: Monterey County Convention and Visitors Bureau)

Alternatively, on the same day you can attend the “3D IC Technology” short course, introducing the fundamentals of 3D integrated circuit technology, system design for 3D, and stress effects due to the Through Silicon Via (TSV).

On the afternoon of Wednesday October 9th, you can opt to follow the Sub Vt Fundamentals Class on “Robust subthreshold ultra-low-voltage design of digital and analog/RF circuits” or the SOI Fundamentals Class “Beyond SOI CMOS: Devices, Circuits, and Materials “.

You could also prefer to take the opportunity to visit the Monterey area.

The conference has always encouraged friendly interactions between the participants, and because it covers the complete chain, from materials to circuits, you are sure to meet someone from a field of interest.  The usual social events, welcome reception, banquet and cookout dinner, will provide you with more openings for networking, contemplating new project opportunities or getting into technical discussions that could shed new light on your research.

To take full advantage of this outstanding event, register now!

Please visit our Hotel Registration Information page to benefit from our special discounted room rates at the conference venue, The Hyatt Regency Monterey Hotel and Spa.

The latest conference updates are available on the S3S website (http://S3Sconference.org).

~ ~ ~

VLSI Kyoto – The SOI Papers

Wednesday, June 19th, 2013

By Adele Hars
There were some breakthrough FD-SOI and other excellent SOI-based papers that came out of the 2013 Symposia on VLSI Technology and Circuits in Kyoto (June 10-14, 2013).

By way of explanation, VSLI comprises two symposia: one on Technology; one on Circuits. However, papers that are relevant to both were presented in “Jumbo Joint Focus” sessions.  The papers should all be available on the IEEEXplore website in early July, say the organizers.

Here’s a quick review of the highlights.

PAPERS IN THE JUMBO-JOINT FOCUS SESSIONS

Cross-sectional and plain view of FDSOI SRAM cells for High Density (0.120 µm2), High Current (0.152 µm2) and Low Voltage(0.197µm2).

JJ2-3: FDSOI Process/Design full solutions for Ultra Low Leakage, High Speed and Low Voltage SRAMs, R. Ranica et al., STMicroelectronics & CEA-LETI

In this paper from STMicroelectronics and CEA-LETI, six Transistor SRAM (6T- SRAM) cells for High Density (0.120 µm2), High Current (0.152 µm2) and Low Voltage (0.197µm2) purposes are fabricated with 28 nm node FDSOI technology for the first time. Starting from a direct porting of bulk planar CMOS design, the improvement in read current Iread has been confirmed up to +50% (@Vdd=1.0V) & +200% (@ Vdd=0.6 V), respectively, compared with 28 nm Low-Power (LP) CMOS technology.Additionally, -100mV minimum operating voltage ( Vmin) reduction has been demonstrated with 28 nm FDSOI technology. Alternative flip-well and single well architecture provides further speed and  Vminimprovement, down to 0.42V on 1Mb 0.197µm2 . Ultimate stand-by leakage below 1pA on 0.120 µm2bitcell at Vdd=0.6V is finally reached by taking the full benefits of the back bias capability of FDSOI.

JJ1-8: First Demonstration of a Full 28nm High-k/Metal Gate Circuit Transfer from Bulk to UTBB FDSOI Technology Through Hybrid Integration, D. Golanskiet al, ST Microelectronics and CEA-LETI

For the first time a full hybrid integration scheme is proposed, allowing a full circuit design transfer from 28nm Bulk CMOS high-k/metal gate onto UTBB FDSOI with minimum design effort. As the performance of FDSOI logic and SRAM devices have already been reported, this paper highlights the original way to integrate ESD devices, variable MOS capacitors and vertical bipolar transistor within the frame of our hybrid technology. Competitive ESD performance for the same footprint is achieved through hybrid MOSFETS snap-back voltage reduction, obtained by implant engineering. In addition, we demonstrate that the performance of Silicon Controlled Rectifier (SCR) and ESD diodes are matched vs Bulk technology while maintaining the performance of FDSOI devices and without any additional masks.

JJ1-9: 2.6GHz Ultra-Wide Voltage Range Energy Efficient Dual A9 in 28nm UTBB FD-SOI, D. Jacquet et al. STMicroelectronics

This paper presents the implementation details and silicon results of a 2.6GHz dual-core ARM Cortex A9 manufactured in a 28nm Ultra-Thin Body and BOX FD-SOI technology. The implementation is based on a fully synthesizable standard design flow, and the design exploits the great flexibility provided by FD-SOI technology, notably a wide Dynamic Voltage and Frequency Scaling (DVFS) range, from 0.6V to 1.2V, and forward body bias (FBB) techniques up to 1.3V bias voltage, thus enabling an extremely energy efficient implementation.

(Note: ST has indicated that 2.6GHz voltage range in the title dates from the time the paper was submitted earlier this year; the actual presentation will show a more extended range.)

JJ2-1 (Invited): Fully-Depleted Planar Technologies and Static RAM, T. Hook et al, IBM, STMicroelectronics, LETI

Key elements of FDSOI (Fully Depleted Silicon on Insulator) technology as applied to SRAMs are described.Thick- and thin-Bottom Oxide (BOX) variants are discussed.

JJ2-4: Ultralow-Voltage Operation of Silicon-on-Thin-BOX (SOTB) 2Mbit SRAM Down to 0.37 V Utilizing Adaptive Back Bias, Y. Yamamoto et al, Low-power Electronics Association & Project (LEAP), The University of Tokyo

We demonstrated record 0.37 V minimum operation voltage (Vmin) of 2Mbit Silicon-on-Thin-Buried-oxide (SOTB) 6T-SRAM. Thanks to small variability of SOTB (AVT~1.2-1.3 mVμm) and adaptive body biasing (ABB), Vmin was lowered down to ~0.4 V regardless of temperature. Both fast access time and small standby leakage were achieved by ABB.

(Note: SOTB is a flavor of planar FD-SOI.)

IN THE CIRCUITS SYMPOSIA

(a) Cross-section TEM images across SiGe fin with Hfin = 17 nm and Wfin = 10.0, 13.5 and 18.0 nm. (b) Cross-section TEM image of a single-fin with Gate length less than 20 nm.

T2-2: High Performance Si1-xGex Channel on Insulator Trigate PFETs Featuring an Implant- Free Process and Aggressively-Scaled Fin and Gate Dimensions, P. Hasemi et al., IBM & GlobalFoundries.

The adoption of advanced high-mobility Silicon Germanium (SiGe) channel materials with aggressively scaled Tri-gate pFETs on insulator is reported for the first time. SiGe is widely known as a suitable channel material for p-type MOS device, thanks to its higher hole mobility than that in conventional silicon material. In this paper, IBM and GlobalFoundries report a SiGe channel Tri-gate pFET with aggressively scaled Fin width (Wfin) and Gate length(Lg) dimensions, which is fabricated using SiGe on insulator substrate. Excellent electrostatic control down to Lg= 18 nm and Wfin< 18 nm has been reported. Using an optimized implant-free raised source/drain process, on-current Ion = 1.1 mA/µm at off-leakage current Ioff = 100 nA/µm and supply voltage Vdd= 1.0 V has been achieved.

15-4: A 28GHz Hybrid PLL in 32nm SOI CMOS, M. Ferriss et al, IBM

A hybrid PLL is introduced, which features a simple switched resistor analog proportional path filter in parallel with a highly digital integral path. The integral path control scheme for the LC-tank VCO includes a novel linearly scaled capacitor bank configuration. At 28 GHz the RMS jitter is 199fs (1MHz to 1GHz), phase noise is -110dBc/Hz at 10MHz offset. The 140μmx160μm 32μm SOI CMOS PLL locks from 23.8 to 30.2 GHz, and draws 31mA from a 1V supply.

21-1: A 35mW 8 b 8.8 GS/s SAR ADC with Low-Power Capacitive Reference Buffers in 32 nm Digital SOI CMOS, L. Kull et al, IBM, EPFL

An asynchronous 8x interleaved redundant SAR ADC achieving 8.8GS/s at 35mW and 1V supply is presented. The ADC features pass-gate selection clocking scheme for time skew minimization and per-channel gain control based on low-power reference voltage buffers. Gain control of each sub-ADC is based on a fine-grain, robust R-3R ladder. The sub-ADC stacks the capacitive SAR DAC with the reference capacitor to reduce the area and enhance the settling speed. The speed and area optimized sub-ADC as well as a short tracking window of 1/8 period enable a low input capacitance and therefore render an input buffer unnecessary. The ADC achieves 38.5dB SNDR and 58fJ/conversion-step with a core chip area of 0.025mm2in 32nm CMOS SOI technology.

21-3: An 8.5mW 5GS/s 6b Flash ADC with Dynamic Offset Calibration in 32nm CMOS SOI, V.H.-C. Chen and L. Pileggi, Carnegie Mellon University

This paper describes a 5GS/s 6bit flash ADC fabricated in a 32nm CMOS SOI. The randomness of process mismatch is exploited to compensate for dynamic offset errors of comparators that occur during high speed operation. Utilizing the proposed calibration, comparators are designed with near-minimum size transistors and built-in reference levels. The ADC achieves an SNDR of 30.9dB at Nyquist and consumes 8.5mW with an FoM of 59.4fJ/conv-step.

IN THE TECHNOLOGY SYMPOSIA

5-3: Optimal Device Architecture and Hetero-Integration Scheme for III-V CMOS, Z. Yuan et al, Stanford University, Applied Materials, Sematech, Texas State University

Low density-of-states (DOS) of carriers and higher dielectric constants in III-Vs warrants transistor architecture with better electrostatics than conventional FinFETs. Additionally, the integration of III-V FinFETs on 300mm silicon wafers is a key technological challenge due to the large lattice-mismatch between III-Vs and silicon. This paper presents a statistical variability study of III-V and Si FinFETs, from which SOI-FinFET architecture is recommended for III-Vs. The co-integration of InAs-OI NMOS and GaSb-OI PMOS on silicon is proposed for its excellent carrier transport and favorable band-lineup. Such hetero-integration is demonstrated on silicon substrate using rapid-melt-growth technique.

10-1: Benefits of Segmented Si/SiGe p-Channel MOSFETs for Analog/RF Applications, N. Xu et al, University of California, Applied Materials, Soitec

Segmented-channel Si and SiGe P-MOSFETs (SegFETs) are compared against control devices fabricated using the same process but starting with non-corrugated substrates, with respect to key analog/RF performance metrics. SegFETs are found to have significant benefits due to their enhanced electrostatic integrity, lower series resistance and greater mobility enhancement, and hence show promise for future System-on-Chip applications.

14.5: 64nm Pitch Interconnects: Optimized for Designability, Manufacturability and Extendibility, C. Goldberg et al, STMicroelectronics, Samsung Electronics, GlobalFoundries, IBM

In this paper, we present a 64nm pitch integration and materials strategy to enable aggressive groundrules and extendibility for multi-node insertions. Exploitation of brightfield entitlements at trench and via lithography enables tight via and bi-directional trench pitch. Setting the same mask metal spacing equal to CPP maximized density scaling and speed of standard cell automation by avoiding cell abutment conflicts. A Self-Aligned-Via (SAV) approach was exploited for single pattern via extendibility, enabling via placement at CPP with a single mask. Yield ramp rate, groundrule validation, and reliability qualification were each accelerated by early brightfield adoption for trench and via, producing a robust cross-module process window. The resulting groundrules and process module have been plugged in to multiple technology nodes without re-development needed (e.g. 20LPM, 14nm FINFET, 14FDSOI, 10nm P&R levels). Scaling, performance, and reliability requirements are achieved across a spectrum of low power-high performance applications.

15-1: Innovative Through-Si 3D Lithography for Ultimate Self-Aligned Planar Double-Gate and Gate-All-Around Nanowire Transistors, R. Coquand et al,STMicroelectronics, CEA-LETI, IMEP-LAHC

This paper reports the first electrical results of self-aligned multigate devices based on an innovative 3D-lithography process. HSQ resist exposition through the Silicon channel allows the formation of self-aligned trenches in a single step. Planar Double-Gate (DG) and Gate-All-Around Silicon Nanowire (GAA Si NW) transistors are fabricated with conformal SiO2-Poly-Si gate stack and the first electrical results obtained with this technique are presented. The good nMOS performances (ION of 1mA per μm at VT+0.7V) with excellent electrostatics (SS down to 62mV per dec and DIBL below 10mV per V at LG 80nm) are paving the way to the ultimate CMOS architecture. To meet all requirements of lowpower SoCs, we also demonstrate the feasibility of fabricating such devices with High-K Metal-Gate (HK-MG) stack and their possible co-integration with FDSOI structures.

15-3: Scaling of Ω-Gate SOI Nanowire N- and P-FET Down to 10nm Gate Length: Size- and Orientation-Dependent Strain Effects, S. Barraud et al, CEA-LETI, CEA-INAC, STMicroelectronics, IMEP-LAHC

High-performance strained Silicon-On-Insulator nanowires with gate width and length scaled down to 10nm are presented. For the first time, effectiveness of sSOI substrates is demonstrated for ultra-scaled N-FET NW (LG=10nm) with an outstanding ION current and an excellent electrostatic immunity (DIBL=82mV/V). P-FET NW performance enhancement is achieved using in-situ etching and selective epitaxial growth of boron-doped SiGe for the formation of recessed Sources/ Drains (S/D). We show an ION improvement up to +100% induced by recessed SiGe S/D for LG=13nm P-FET NW. Finally, size- and orientation-dependent strain impact on short channel performances is discussed. <110> Si NWs provide the best opportunities for strain engineering.

17-2 (Late News): Experimental Analysis and Modeling of Self Heating Effect in Dielectric Isolated Planar and Fin Devices, S. Lee et al, IBM

Field Effect Transistors on SOI offer inherent capacitance and process advantages. The flow of heat generated at the drain junction may be impeded by dielectric isolation but an assessment must also account for conduction of heat through the gate stack and through the device contacts, and its impact on device characteristics should be captured by the scalable model to enable accurate circuit design. A quantitative comparison to 45nm planar SOI shows that while the scaled FinFET on dielectric devices show higher normalized thermal resistance, as expected from device scaling, the characteristic time constant for self heating is still well below the operating frequency of typical logic circuits, hence resulting in negligible self heating effect. For cases where the self heating becomes a factor, e.g., in high-speed I/O circuits, the same design methods can be applied for both planar and FinFET devices on dielectric isolation.

—Adele Hars is the editor-in-chief of Advanced Substrate News.

ST-Ericsson 28nm FD-SOI/ARM Chip Hits 2.8GHz at CES

Tuesday, January 22nd, 2013

Posted by Adele Hars, Editor-in-Chief, Advanced Substrate News

~  ~

What a great start to 2013: at CES in Las Vegas, ST-Ericsson announced the NovaThor™ L8580 ModAp, “the world’s fastest and lowest-power integrated LTE smartphone platform.” This is the one that’s on STMicroelectronics’ 28nm FD-SOI, with sampling set for Q1 2013.

And it’s a game changer – for users, for designers, for foundries, and for bean counters.  Here’s why.

The NovaThor L8580 integrates an eQuad 2.5GHz processor based on the ARM Cortex-A9, an Imagination PowerVR™ SGX544 GPU running at 600Mhz and an advanced multimode LTE modem on a single 28nm FD-SOI die.

ST-Ericsson’s NovaThor(TM) L8580 on ST’s 28nm FD-SOI features a 2.5Ghz eQuad(TM) app processor with ultra-low power consumption. (Courtesy: ST-Ericsson)

In the eQuad CPU architecture, each processor core can operate as a high-performance core or a very-low-power core, depending on what’s needed at the moment. Since all the eQuad cores can adapt to the needs of the user at any given time, there’s no need for the dedicated low-power cores found in other multi-core CPU architectures. Remember, the 2.5GHz cores in the L8580 are the mobile industry’s fastest, or conversely, at 0.6V in low-power mode, the industry’s most battery-friendly. With all 2.5GHz cores working together, expect blazing high-performance when you’re doing something like browsing the web. But when phone’s your pocket, those cores will take barely a sip of power.

The NovaThor L8580 is essentially a straight port from 28nm bulk to 28nm FD-SOI of the (very successful) NovaThor L8540, with just a bit of tweaking to fully leverage cool things you can do with FD-SOI, like biasing to increase performance and conserve power.

For the folks designing smartphones and tablets (and ultimately for the end-user), that port to FD-SOI gets the NovaThor L8580:

  • CPUs running 35% faster and GPU and multimedia accelerators running 20% faster. In terms of multimedia performance, they’re supporting 1080p video encoding and playback at up to 60 frames per second, 1080p 3D camcorder functionality, displays up to WUXGA (1920×1200) at 60 frames per second and cameras up to 20 megapixels. (Hence their use of the descriptive “extraordinary”.)
  • 25% less power consumption than rival architectures when running at high-performance  levels – think Cooler Operation.
  • A low-power mode can deliver up to 5000 DMIPS at 0.6V – more than enough computing power for the majority of applications in everyday use. A key point here is that it enables stable SRAM operation at 0.6V – have you heard of anyone matching this? The result is that this low-power mode consumes 50% less power to deliver the same performance compared with alternative solutions in bulk CMOS.

It all adds up to big battery savings – this is the extra day CEO Didier Lamouche promised us in Barcelona last year when they announced this chip.

YouTube Preview Image

ST-Ericsson has posted an amazing video, filmed live at CES 13. In the first part of the demo (re: high-perf), on a Samsung Galaxy S3, they’ve got the Sky Castle 3D Graphics Demo launching twice as fast on FD-SOI as the bulk equivalent, and hitting 2.8GHz! And in the second demo (re: low power), they’re hitting 1GHz using just 0.636V, which would take 1.1V on bulk.

Design Highlights

For the ST-E designers, most of the IP blocks were directly re-used from the bulk design, so the porting to FD-SOI was extremely simple and fast.

For the manufacturing folks over at STMicroelectronics (and starting this year, at GloFo), FD-SOI is a planar technology that re-uses 90% of the process steps used in 28nm bulk. The overall manufacturing process in FD-SOI is 12% less complex, so they’ve got lower cycle time and reduced manufacturing costs (bean counters take note, please). They also point out that the manufacturing tools for FD-SOI are much simpler than those required for FinFETs.

Wondering what’s next? The 14nm FD-SOI node is already in development, the ARM Cortex-A15‘s  on the radar, and the FD-SOI roadmap is already defined up the 10nm node.

With FD-SOI, you can do much more with body-biasing (aka back-biasing) than you can in bulk (which suffers from too much leakage). Thanks to the ultra-thin insulator layer in FD-SOI, the biasing creates a buried gate below the channel, so it effectively acts like a vertical double gate transistor. This facilitates the flow of electrons, leading to a higher voltage in the body, and faster switching of the transistor. (Image courtesy ST-Ericsson)

With FD-SOI, you can hit higher speeds with lower operating voltages. This is because the buried oxide layer prevents electrons from leaking away as they travel through the channel from the source to the drain (this sort of leakage is a major source of power consumption in 28nm bulk, which depends on doping to handle leakage). Interestingly, this graph shows ST-E going down to 0.5V – which is incredibly impressive. (Image courtesy of ST-Ericsson)

(Image courtesy ST-Ericsson)

(Image courtesy ST-Ericsson)

As the (now award-winning) folks over at ST and Leti described for us a few years ago, designing a good SOC involves using the right blend of low, standard and high-Vt devices according to the target application and how it’s being used at any given time.  The ST-E designers use this feature to apply different voltages independently to the top and the buried gates of the FD-SOI transistor, which effectively changes its characteristics. By choosing optimal combinations of the voltages, the transistor characteristics can be transformed from those of a very high-performance transistor to those of a very low-power transistor. A processing core built up of such transistors can operate as if it were in fact two cores – one optimized for high performance and the other for low power. (You can’t do this with FinFETs, btw.)

Just Posted: FD-SOI video & white paper

Just as this blog was going online, ST-Ericsson posted an excellent, in-depth white paper; and in partnership with STMicroelectroics, a YouTube video detailing the how’s and why’s of FD-SOI.Here are the links — you really don’t want to miss these:

Multiprocessing in Mobile Platforms: the Marketing and the Reality
In this white paper, ST-Ericsson’s Marco Cornero and Andreas Anyuru “…illustrate and compare the main technological options available in multiprocessing for mobile platforms, highlighting the synergies between multiprocessing and the disruptive FD-SOI silicon technology used in the upcoming ST-Ericsson products.”

An Introduction to FD-SOI
ddehbcfj
STMicroelectronics and ST-Ericsson have teamed up on this excellent video, which garnered 1250 views within the first four days of its posting on YouTube. The animations and comparisons highlight why FD-SOI is so fast, and so cool.

~ ~

Don’t miss Fully-Depleted Tech Symposium during IEDM (SF)

Tuesday, December 4th, 2012

Posted by Adele Hars, Editor-in-Chief, Advanced Substrate News

~  ~

If you want to cut through the noise surrounding the choices for 28nm and beyond, an excellent place to start is the SOI Consortium’s Fully Depleted Technology Symposium.

As a member of the design and manufacturing communities, this is your chance to see and hear what industry leaders are actually doing. Planar? FinFET? The Consortium’s been doing these symposia during major conferences for going on four years now, and lively debates always ensue.

(Courtesy: Hilton Hotels & Resorts)

This next FD Tech symposium happens the first day of the IEEE’s IEDM conference in San Francisco – Monday, December 10th at 8:15pm. Conveniently, it’s also taking place in the same building – at the SF Hilton.

Top technologists from STMicroelectronics, ST-Ericsson, IBM, ARM, Altera, LETI, Soitec, MEMC and others will be debating comprehensive Fully-Depleted Technology solutions.

But perhaps most importantly, we’re going to get the first product-level benchmarking results of 28nm FD-planar for mobile SoC and FPGA applications.  That’s silicon proof straight from the companies who are doing it.

If you’ve been following recent ASN postings from STMST-EricssonIBM and others, you know these folks are really excited about the results they’re seeing.

Here’s a peak at the presentations planned for the symposium:

  • Planar Fully-Depleted Technology at 28nm and below for extremely power-efficient SoCs:  SoC level 28nm Planar Fully-Depleted silicon results
    By Joel Hartmann, Executive VP Front-End Manufacturing & Process R&D, STMicroelectronics
  • Evaluation and benchmarking of 14nm planar Fully-Depleted Technology for FPGAs
    By Jeff Watt, Ph.D. Fellow, Technology Development, Altera Corporation
  • Challenges and comparisons of designing power-efficient SoCs with planar Fully Depleted transistors and FinFETS
    By Rob Aitken, ARM Fellow
  • Second-generation FinFETs and Fin-on-Oxide
    By Ed Nowak, IBM Distinguished Engineer and Device Chief Designer, Semiconductor R&D Center, IBM Systems and Technology Group

The presentations will be followed by a Q&A.

Admission is free, but space is limited, so you must reserve in advance – click here to go to the special registration site.

To recap, it’s the:

Fully-Depleted Transistors Technology Symposium
Hilton San Francisco Union Square Hotel (333 O’Farrell St.)
Monday, December 10th, 2012
8:15pm to 10:30pm

Food & refreshments will be provided.

We won’t all be in San Francisco, so if you can’t get there, the presentations will be posted on the SOI Consortium website (you can also get the presentations from previous events there, too, as well as excellent white papers).

If you do go and want to share your reactions on Twitter, use #FDchipTech and @soiconsortium.

This will be a great event – don’t miss it!

~~

CMP, ST et al offer 28nm FD-SOI for prototyping, research

Tuesday, November 6th, 2012

Posted by Adele Hars, Editor-in-Chief, Advanced Substrate News

~  ~

What would a port to 28nm FD-SOI do for your design?  A recent announcement by CMP, STMicroelectronics and Soitec invites you to find out.  Specifically, ST’s CMOS 28nm Fully Depleted Silicon-On-Insulator (FD-SOI) process – which uses innovative silicon substrates from Soitec and incorporates robust, compact models from Leti – is now available for prototyping to universities, research labs and design companies through the silicon brokerage services provided by CMP (Circuits Multi Projets®). ST is releasing this process technology to third parties as it nears completion of its first commercial FD-SOI wafersWhat you can get from CMP is the same process technology that will be available to all at GlobalFoundries in high-volume next year.

The CMP multi-project wafer service allows organizations to obtain small quantities of advanced ICs – typically from a few dozen (for a prototype, say) to over a hundred thousand units (for low-volume production). CMP is a non-profit, non-sponsored organization created in 1981, with a long history of offering SOI and other advanced processes. It offers industrial quality process lines – with industrial-level, stable yields. Headquartered in Grenoble, France, CMP has over 1000 clients in 70 countries.

The cost of ST’s 28nm FD-SOI CMOS process at CMP has been fixed at 18,000 €/mm2, with a minimum of 1mm2.  At this point in scaling, that gets you about two million gates – about eight million transistors.  So the pricing is very aggressive for an advanced technology node – and it comes down if you get more than 3mm2, and even more if you get >15mm2, Kholdoun Torki, CMP Technical Director explained to ASN.

Dr. Torki was kind enough to elaborate a bit on the particulars for us. Here’s what he says. The ST design kit contains a full-custom part, and standard-cells and I/O libraries with digital design-flows supported under Cadence Encounter and Synopsys Physical Compiler. The design-kit is from ST Front-End Manufacturing and Technology, Crolles. CMP delivers this design-kit under NDA.

Devices are supported for UTSOI (ultra-thin SOI) models, which were developed by and are the property of Leti.

The UTSOI model is available under Eldo from Mentor and Hspice from Synopsys. It is also expected to be available for Spectre (Cadence) and for Golden Gate and ADS (Agilent) within the next few months.

CMP provides the first level support (installation, and general questions on the use of the kit). Multi-Projects Wafer runs are organized at ST Crolles. For low volume production, a quote is issued on a case-by-case basis, on request.

The ST 28nm FD-SOI offering has a true 28nm BEOL metallization with .1µ metal pitch, says Dr. Torki.

CMP also has offered the Leti 20nm FD-SOI R&D process since 2010. (In fact for those looking even further ahead, Leti has predictive model cards down to 11nm.) It is expected the 20nm FD-SOI process from ST, incorporating strategic technology from Leti, will be available from CMP towards the end of next year, although the exact date has not yet been fixed.

How it works

In Multi-Project Wafer runs, costs are shared (and reduced) because the reticle area is shared across customers. CMP offers one-stop shopping, including:

  • NDA processing
  • the design-kits linking CAD and processes, and related support
  • Design submission, checking, and final database to the Fab
  • Wafer sawing and Packaging
  • Export license processing
  • Chip delivery

Because reticles are shared across multiple designs, CMP customers benefit from very attractive pricing. (Courtesy: CMP)

Last year (2011), CMP handled 273 circuits, including prototypes, low-volume production runs and industrial applications.

For organizations like the 77 customers in 23 countries using 28nm bulk CMOS through CMP’s program, migrating from 28nm CMOS bulk to 28nm FD-SOI will be seamless, says Dr. Torki. There are no disruptions in process or design. There are the same layer numbers and names, so they can load a bulk design directly into an FD-SOI design environment. They use the common design-rules platform (ISDA alliance design-rules), and bulk devices can be co-integrated with FD-SOI devices as needed.

These are real, leading edge chips and circuits we’re talking about. Here’s what you get:

  • 28nm HK/MG FD-SOI with ultra-thin BOX and ground plane
  • 10 Cu metal layers: (6 thin + 2 medium + 2 thick)
  • Triple Well (Deep N-Well allows the P-Well to be isolated from the substrate)
  • Single IO oxide + Single core oxide.
  • Double VT: 1.0V Low Vt transistors (LVT) + 1.0V super Regular Vt transistors (RVT)
  • Low Leakage (high density) SRAM using LP core oxide
  • IO supply voltage: 1.8 V using the IO oxide.
  • Ultra Low k inter-level dielectric
  • 0.10µ metal pitch
  • Self-aligned silicided drain, source and gate
  • Poly and active resistors: Silicide protection over active areas for ESD protection
  • CMP for enhanced planarization (on STI, Contacts, Metals and vias).

FD-SOI Transistor (Courtesy: ST)

The 28nm FD-SOI standard-cells, IO cells and related IP are all from ST. The CORE cells Libraries include:

  • CORE_LL: Low Power LVT
  • CORE_LR: Low Power RVT
  • CLOCK (LL and LR): Buffer cells and the same for clock tree synthesis
  • PR: Place and route filler cells.

The IO cells Libraries include:

  • Digital
  • Analog
  • Flip-Chip bumps
  • ESD

You can find more details at the CMP website, or from the paper Dr. Torki presented at the 2012 SOI Conference.

So this represents a real opportunity.  Universities, often doing important research for industrial partners, have long known the value of using services like CMP’s. But with this latest ST-CMP-Soitec announcement, the fabless world can do more than kick the tires – they can take 28nm FD-SOI for a real test drive.

FD-SOI promises an extremely cost-effective, performance-enhanced, power-miser of a chip.  Wouldn’t you like to give it a try?

~~

Wafer Leaders Extend Basis for Global SOI Supply

Tuesday, October 16th, 2012

Posted by Adele Hars, Editor-in-Chief, Advanced Substrate News

~  ~

It’s a bright green light from the world leaders in SOI wafer capacity. Soitec, the world leader in SOI wafer production, and long-time partner Shin-Etsu Handatai (SEH), the world’s biggest producer of silicon wafers, have extended their licensing agreement and expanded their technology cooperation.

SEH is a $12.7 billion company, supplying over 20% of the world’s bulk silicon wafers. SEH’s relationship with Soitec goes way back: they were one of the original corporate investors back in 1997, and the first to license Soitec’s Smart CutTM technology for manufacturing SOI wafers.

With its 300mm SOI wafer production fabs in France and Singapore, Soitec has an expandable installed industrial base of two million wafers per year.

As Horacio Mendez, Executive Direct of the SOI Consortium told ASN, “This is a very significant announcement. The substrate supply chain is fully engaged: we have multiple independent suppliers that can clearly meet the market demands for all key sectors, including mobile devices. As the advanced technology nodes ramp, the wafer production is in place; and very importantly, the capacity is expandable to provide maximum flexibility to customers.”

SEH has been manufacturing standard SOI wafers using Smart Cut technology for years. And last year, the company said it had completed development of its ultra-thin BOX (aka UTB — the wafers used for planar FD-SOI) substrates. Nobuo Katsuoka, director of the SOI program at SEH, recently told Semiconductor Manufacturing & Design, “SEH is delighted to deliver the products on request.”

Wafers for FD-SOI (a “planar” “2D” technology) have Angstrom-level uniformity in their ultra-thin layers – so it’s excellent news that the the industry’s two leaders are both supply sources.

SOI wafers for FinFETs (a “vertical” or “3D” technology, for which the top silicon and insulating BOX layer don’t have to be ultra-ultra-thin) have also long been available from Soitec, SEH and other sources.

With respect to this announcement, SEH’s Katsuoka said, “We are very excited about the business opportunities for SOI products, and we look forward to working with Soitec to extend the global supply chain for new products, such as FD-SOI and SOI for FinFETs, which are showing potential benefits in mobile and embedded applications. Our relationship with Soitec has been a very positive and fruitful one, and we are excited to extend that collaboration. The unique features of Smart Cut will enable our two companies to jointly improve global output for existing and new SOI products.”

As Steve Longoria, SVP of WW Business Development at Soitec, told ASN, “The wafer is the front end of the manufacturing process. This announcement is a proof point of new energy for robust, multi-source supply for impending high-volume demand.”

BEYOND LOGIC

The newly announced Soitec-SEH agreement also extends the companies’ commitment to wafers for a broad-range of areas. For example, there are major market opportunities in SOI for RF devices, power, MEMS/sensors, photonics and more.

The agreement also extends to R&D for technologies of the next wave. We might think of Smart Cut as an SOI technology, but in fact it’s really a manufacturing technology that can be applied to a huge range of wafer materials. As a result of the extended agreement, SEH will continue to use Soitec’s industry-defining Smart Cut technology to manufacture SOI wafers.  What’s more, SEH will now also be able to extend its Smart Cut manufacturing capabilities to other materials, a trend commonly referred to as Silicon on Anything or SOA (any material on top of which there is a thin film of plain silicon), which will allow SEH to further expand its scope of applications.

So with an abundance of opportunities, a robust multi-source supply chain for the front end of the chip manufacturing process, top-quality wafers that enable savings and efficiencies – in short, better end-user value – it’s all systems go for high-volume demand.

This illustration shows how Smart Cut, Soitec’s proprietary engineered wafer technology, works. The industry standard, this revolutionary wafer bonding and layer splitting processes makes it possible to transfer a thin layer of material from a donor substrate to another substrate, overcoming physical limitations and changing the face of the substrate industry. The Smart Cut technology was originally developed by the CEA-Leti. Soitec holds exclusive exploitation of CEA-Leti rights into the Smart Cut technology, including the right to sublicense to SEH. The technology was made viable for SOI high-volume commercial production by Soitec, and is now protected by more than 3,000 patents owned or controlled by Soitec.

SPOTLIGHT ON FD-SOI, FINFETS AT IEEE SOI CONFERENCE
;1-4 OCT, NAPA

Tuesday, September 25th, 2012

Posted by Adele Hars, Editor-in-Chief, Advanced Substrate News

~  ~

The 38th annual SOI Conference is coming right up. Sponsored by IEEE Electron Devices Society, this is the only dedicated SOI conference covering the full technology chain from materials to devices, circuits and system applications.

Chaired this year by Gosia Jurczak (manager of the Memories Program at imec), this excellent conference is well worth attending. It’s where the giants of the SOI-related research community meet the leading edge of industry. But there are also excellent courses for those new to the technology. And it’s all in an atmosphere that’s at once high-powered yet intimate and collegial, out of the media spotlight.

This year it will be held 1-4 October at the Meritage Resort and Spa, a Napa Valley luxury hotel and resort, set against rolling hills with its own private vineyards. Finding the right spot for this conference is key. One of the things that people really like about it is that in addition to the excellent speakers and presentations, the locations are conducive to informal discussions and networking across multiple fields. This year’s spot looks like the perfect setting, with easy access to Silicon Valley.

http://www.advancedsubstratenews.com/wp-content/uploads/2012/09/SOIConf12front_small-610x405.jpg

The 2012 IEEE SOI Conference will be held October 1-4 at the Meritage Resort and Spa in Napa Valley, California. (Photo Credit: Rex Gelert)

The Conference includes a three-day Technical Program, a Short Course, a Fundamentals Class, and an evening Panel Discussion. Here’s a look at what’s on tap for this year.

(You can get the pdf of the full program & registration information from the website.)

THE PAPERS

ARM’s SOI guru Jean-Luc Pelloie chaired this year’s Technical Program committee, which selected 33 papers for the technical sessions. There will also be 18 invited talks given by world renowned experts in process, SOI device and circuits design and architectures and SOI-specific applications like MEMS, high temperature and rad-hard.

Here’s a rundown of the sessions:

  1. Plenary: talks by Soitec and ARM
  2. Fully-Depleted SOI: topics include Ground Plane Optimization for 20nm, strain, process & design considerations. GF will present the foundry’s perspective on the move to 28nm FD-SOI and beyond. Also contributors from ST, Leti, Soitec, IBM, GSS/U.Glasgow and more.
  3. FinFET and Fully Depleted SOI: topics include Tri-Gate, SOI-FinFET, Flash Memory, strain solutions, flexible Vth. Contributors include Leti, AMD, Soitec, Synopsys, imec, UCL, AIST and UCBerkeley.
  4. Poster session: from universities & research institutes supported by industry (IBM, Samsung, etc.)
  5. RF and Circuits: topics include high-performance RF, tunable antennas, TSVs. Contributors include Skyworks, ST, Xilinx and leading universities in China.
  6. Memory: contributors from IMEP, ST, TI, R&D institutes and academia
  7. Novel Devices and Substrate Engineering: topics include nanowires, strained SOI wafers and III-V devices, with contributions from Tokyo Tech, Toshiba, IBM, Soitec, Leti and more.
  8. MEMS and Photonics: includes an invited talk by U. Washington on their Intel-sponsored photonics foundry service and papers from MIT and more.
  9. RF and Circuits: covering high-voltage, high-temperature, with contributions from Cissoid, IBM, UCL and more.
  10. Hot Topics: Fully-Depleted Technology and Design Platforms: six invited talks by ST, IBM, CMP, GF, UC Berkeley and the SOI Consortium.
  11. Late News: tbd, of course…

THE COURSES & PANEL

Short course: Design Enablement for Planar FD & FinFET/Multi-gates (chaired by UCL & Leti) The conference kicks off on Monday with six sessions by experts in technological trends, the physics of fully depleted devices, technology design kits as well as digital, analog and RF designs specific for FD-SOI.

The fundamentals course: FinFET physics (chaired by Intel): on Wednesday afternoon, three hour-long sessions will give comprehensive insights into the physics and processes related to multi-gate FETs.

Panel: Is FinFET the only option at 14nm? (chaired by Soitec) Following the always-popular Wednesday evening cookout, the panel discussion is a lively, favorite event. This year’s invited distinguished experts — Scott Luning (GF), Ali Khakifirooz (IBM), Yang Du (Qualcomm). and moderator Sorin Cristoloveanu (Grenoble Institute of Technology) – will share their views on the industry’s FinFET roadmap.

All in all, it’s a great event. If you go, why not share your impressions on Twitter with #SOIconf12, @followASN and @IEEEorg? And of course ASN will follow-up with summaries of the top papers in our PaperLinks section. See you there?

~~

Power And Performance: GSS Sees SOI Advantages For FinFETs

Monday, September 17th, 2012

Posted by Adele Hars, Editor-in-Chief, Advanced Substrate News

~  ~

Are FinFETs better on SOI? In a series of papers, high-profile blogs and subsequent media coverage,Gold Standard Simulations (aka GSS) has indicated that, yes, FinFETs should indeed be better on SOI.

To those of us not deeply involved in the research world, much of this may seem to come out of nowhere.  But there’s a lot of history here, and in this blog we’ll take a look at what it’s all about, and connect a few dots.

THE GSS IEDM ’11 PAPER

GSS is a recent spin-off of Scotland’s University of Glasgow – but there’s nothing new to the research community about these folks.  The core GSS-U.Glasgow team has been presenting important papers on device modeling at IEDM (which is one of the most prestigious of our industry’s conferences) and elsewhere for many years.

At the risk of stating the obvious, accurate simulations are incredibly important. Technologists need to be able to predict what results they can expect from different possible transistor design options before selecting the most promising ones.  Then they also need to provide reliable models to designers who will use them before committing chips to silicon.  One of the biggest challenges is predicting variability, which as we all know is getting worse as transistors scale to ever-smaller dimensions.

At IEDM ’11 last December, GSS-U.Glasgow presented Statistical variability and reliability in nanoscale FinFETs. This covered  “A comprehensive full-scale 3D simulation study of statistical variability and reliability in emerging, scaled FinFETs on SOI substrate with gate-lengths of 20nm, 14nm and 10nm and low channel doping…”.  Essentially they concluded that scaling FinFETs on SOI should be no problem – and in fact the statistical variability of a 10nm FinFET on SOI would be about the same as the industry’s currently seeing in 45nm bulk CMOS.

That paper was based on work that the GSS-U.Glasgow team had done on two major European projects: the EU ENIAC MODERN project, and the EU FP7 TRAMS project.  It’s perhaps worth looking a little more closely at what those projects are about – and who’s involved:

  • A key objective of the MODERN (for Modeling and Design of Reliable, process variation-awareNanoelectronic devices, circuits and systems) is to develop “effective methods for evaluating the impact of process variations on manufacturability, design reliability and circuit performance”.  Other partners in the project include ST, Leti, NXP, Infineon, Numonyx (now Micron) and Synopsys.
  • The objective of the TRAMS (for ‘Tera-scale Reliable Adaptive Memory Systems’) project is “to investigate in depth potential new design alternatives and paradigms, which will be able to provide reliable memory systems out of highly unreliable nanodevices at a reasonable cost and design effort”. Other partners in the project include Intel, imec, and UPC/BarcelonaTech.

THE BLOGS

A few months later, when Chipworks published pictures of the (bulk silicon) Intel 22nm FinFETs, the folks at GSS started a series of blogs that caught the attention of major tech pubs such as EE TimesElectronics Weekly and EDN.  For reference, here are the blogs and basically what they concluded:

Specifically, the July 27th blog indicated that if FinFETs are rectangular in shape, drive current would be 12-15% better.  Would that be easier to do on an SOI wafer? Soitec has argued that their “fin-first” SOI-based approach to FinFET manufacturing will save both time & money while getting better results (see Soitec’s Wafer Roadmap for Fully Depleted Planar and 3D/FinFET in Semiconductor Manufacturing & Design).

The GSS blog also reminded readers that the company’s CEO and founder, Asen Asenov (an extremely heavy hitter who’s published over 550 papers), has hinted that “…SOI FinFETs with an almost ideal rectangular shape may be a better solution for future FinFET scaling”.  GSS has noted previously that “FinFETs built on an SOI substrate could have significant advantages terms of simpler processing, better process control and reduced statistical variability”.

Fin shape aside, GSS said that by virtue of the layer of insulation, SOI would give another 5% boost to FinFET drive current.  But perhaps more importantly, that layer of insulation in SOI-based FinFETs would deliver on average 2.5 times less leakage – which would translate into a doubling of battery-life for your cell phone.

NEXT PROJECT

IBM has now entered into an agreement with GSS et al on a project called StatDES, for Statistical Design and Verification of Analogue Systems – see last month’s IBM blog by IBM Research Scientist Dr. Sani Nassif, entitledFins on transistors change processor power and performance”.

Dr. Nassif writes, “IBM, University of Glasgow and the Scottish Funding Council are collaborating on a project to simulate 3D microprocessor transistors at a mere 14 nanometer scale (the virus that causes the common cold is more than twice as large at 32 nanometers). Using a silicon-on-insulator (SOI) substrate, the FinFET (fin field-effect transistor) project, called StatDES, promises to keep improving microprocessor performance and energy conservation.”

The steering group also includes folks from ST, Freescale, Wolfson and Cadence, so one would guess we’ll be hearing more from this project – and others like it, to be sure – in the future, wouldn’t you think?

~~

Roundup: FD-SOI, Ecosystem Shine at Semicon West

Tuesday, August 7th, 2012

Posted by Adele Hars, Editor-in-Chief, Advanced Substrate News

~  ~

SOI in general and FD-SOI in particular were hot topics at this year’s Semicon West in San Francisco. A panel discussion by industry thought-leaders gathered to discuss the current challenges facing the mobile industry was among the highlights.  It featured an impressive line-up of key players from the ecosystem at the forefront of fully-depleted, SOI based technologies, including:

  • ARM: Ron Moore – Director of Strategic Accounts Marketing, Physical IP Division
  • GlobalFoundries: Subramani Kengeri – Vice President of Design Solutions
  • IBM: Gary Patton – Vice President of the Semiconductor Research and Development Center
  • SOI Industry Consortium: Horacio Mendez – Executive Director
  • Soitec: Steve Longoria – Senior Vice President of World Wide Strategic Business Development
  • STMicroelectronics: Philippe Magarshack – Technology Research and Development Group Vice President
  • UC Berkeley: Chenming Calvin Hu, Ph.D. – TSMC Distinguished Professor at the University of California at Berkeley

FD-SOI figured prominently in a panel on mobile challenges held during Semicon West '12. Left to right: C. Hu (UCBerkeley); R. Moore (ARM); H. Mendez (SOI Consortium); G. Patton (IBM); P. Magarshack (ST); S. Kengeri (GF); S. Longoria (Soitec)

Setting the scene, Soitec’s Longoria noted that, “Our industry is now driven by SOCs (where in the past it was CPUs) and we are on much shorter product cycles driven by consumer applications.”

As the first to be bringing out products based on ultra-thin layers of both SOI and insulator, ST’s Magarshack spoke extensively about their planar FD-SOI technology, which will be taping out at 28nm this summer.  He said that they were very confident and would be sharing the results at the end of the year.  He also emphasized their full commitment and close work with GF to enable the ecosystem, which was echoed in comments by GF’s Kengari.

With respect to 28nm, said Mendez of the SOI Consortium, “…the analysis says the cost [of FD-SOI] is equivalent to or even lower [than bulk silicon].”

IBM’s  Patton concurred, saying that, “When you’re dealing with an FD-SOI wafer, we see a big key advantage in manufacturability and time to market.”

Asked how FD-SOI would impact end-users, ARM’s Moore responded that mobile is about saving power.   FD-SOI provides a low-power bedrock, and with the headroom, the back-biasing option lets you add incredible performance.  “We see a valuable flow with FD-SOI & FinFET from devices down to servers,” he said.

In conclusion, UCBerkeley’s Hu said, “I’m very confident FD-SOI and FinFET are going to serve the industry quite well.”

The panel was followed by a great party held by leading SOI wafer manufacturer Soitec, to celebrate their 20th anniversary.

Earlier in the day, the show’s TechXpot series lead off with Enabling Sub-22nm with New Materials and Processes.  It was packed – with all the chairs taken, people were sitting on the floor in the aisles and crowded four-deep all around the edges. In his presentation on the  “Convergence of Engineered Substrates and IC Devices for Mobile Applications”,  Soitec CTO Dr. Carlos Mazure reminded us that mobile is really many technologies: in addition to the digital side, there’s RF, imaging, MEMS and memories – all of which can (and many do) benefit from SOI and other advanced engineered substrates. They’re not all on the leading edge, but when it comes to battery life, they all count.

At another presentation, Leti’s FD-SOI Manager with the IBM Alliance Maud Vinet covered their leading-edge research on FD-SOI.  She says that they’ll be presenting exciting results at IEDM in December, so watch this page for that.

All in all, it was a good show for the SOI ecosystem, full of energy and renewed enthusiasm.

~~

Leti Looks at Using Strain with FD-SOI for High-Perf Apps

Friday, June 29th, 2012

Posted by Adele Hars, Editor-in-Chief, Advanced Substrate News

~ ~

The researchers at Leti working on FD-SOI have extremely deep expertise in it. One of the areas they’ve looked at is performance boosters. With the interest in FD-SOI rapidly increasing on the heels of the recent ST-GF announcement, their work becomes even more timely.

A key Leti team wrote a summary of some recent strain work, which first appeared as part of the Advanced Substrate News special edition on FD-SOI industrialization.  In case you missed it there, here it is again.

~~

Leti: Adding Strain to FD-SOI for 20nm and Beyond

By Olivier FAYNOT, Microelectronic Section Manager, and Francois ANDRIEU, senior research engineer at CEA-LETI.

The outstanding electrostatic performance already reported for planar FD-SOI technology can be improved by the use of ION boosters in order to target-high performance applications, as already demonstrated in the past.

Figure 1: Stressor options for FD-SOI technology

As illustrated in Figure 1, strain can be incorporated at various places in the transistor:

  • In the channel through the use of c-SiGe for PMOS devices and strained SOI (sSOI) material for NMOS.
  • In the source and drain region with the use of SiGe or SiC for P and NMOS respectively.
  • In the Middle-of-Line process with the deposition of tensile or compressive Contact Etch Stop Layers (t- or c-CESL).

First, it is worth noting that local stressors are often more effective on FD-SOI than on bulk at a given geometry because of the mechanical properties of the buried SiO2, which is less stiff than Si[1].

We have assessed different boosters on the FD-SOI architecture. The results are summarized in Figure 2.

For NMOS, one can see that sSOI is the more promising stressor with an ION improvement of 20-35 % for wide devices; and, it can increase up to 50 % for W = 50 nm narrow transistors[2] [1]. Our preliminary results let us predict a better scalability for sSOI than for t-CESL or SMT. Moreover, the compatibility of sSOI was already proved (even if the ION-boosts are not always totally additive) with t-CESL[3] for NMOS and with rotated substrates[2], e-SiGe[4], SiGe channels[5] and (110) substrates[6] for pMOS.

For pMOSFETs, there are several options to enhance the ION, the simpler being the 45° rotated substrates with a 8 % boost[1] and r-SiGe with a 18 % improvement by an access resistance reduction (37 % if a strain can also be generated into the channel)[4]. Once again, the scalability of the global boosters is certainly better than for the local ones (c-CESL and e-SiGe).

Figure 2: Efficiency of stressor techniques for N & PMOS

In conclusion, thanks to all the experiments already run, we are confident in the fact that strain can be incorporated in the planar FDSOI architecture, thus boosting performance even further at 20 nm and beyond.

NOTE: This article was adapted from the Leti presentation, “FD-SOI strain options for 20 nm and below”, given at the SOI Consortium’s 6th FD-SOI Workshop. The complete presentation is available at www.soiconsortium.org.

- – – – -

References:

[1] C. Fenouillet-Beranger, L. Pham Nguyen, P. Perreau, S. Denorme, F. Andrieu, O. Faynot, L. Tosti, L. Brevard, C. Buj, O.Weber, C. Gallon, V. Fiori, F. Boeuf, S. Cristoloveanu, T. Skotnicki, “Ultra compact FDSOI transistors (including Strain and orientation) processing and performance”, ECS Transaction, 2009.

[2] S. Baudot, F. Andrieu, O. Faynot, J. Eymery, “Electrical and diffraction characterization of short and narrow MOSFETs on Fully Depleted strained Silicon-On-Insulator (sSOI)”, Solid State Electronics, 2010.

[3] F. Andrieu, C. Fenouillet-Beranger, O. Weber, S. Baudot, C. Buj, J.-P. Noel, O. Thomas, O. Rozeau, P. Perreau, L. Tosti, L. Brevard, O. Faynot, “Ultrathin Body and BOX SOI and sSOI for Low Power Application at the 22 nm technology node and below”, invited talk at SSDM, 2009.

[4] S. Baudot, F. Andrieu, O. Weber, P. Perreau, J.F. Damlencourt, S. Barnola, T. Salvetat, L. Tosti, L. Brévard, D. Lafond, J. Eymery, O. Faynot, “Fully-Depleted Strained Silicon-On-Insulator p-MOSFETs with Recessed and Embedded Silicon-Germanium Source/Drain”, 2010.

[5] F. Andrieu, T. Ernst, O. Faynot, Y. Bogumilowicz, J.-M. Hartmann, J. Eymery, D. Lafond, Y.-M. Levaillant, C. Dupré, R. Powers, F. Fournel, C. Fenouillet-Beranger, A. Vandooren, B. Ghyselen, C. Mazure, N. Kernevez, G. Ghibaudo and S. Deleonibus, “Co-integrated dual strained channel on fully depleted sSDOI CMOSFETs with HfO2 /TiN gate stack down to 15 nm gate length”, IEEE SOI Conference, p. 223-5, 2005.

[6] T. Mizuno, N. Sugiyama, T. Tezuka, Y. Moriyama, S. Nakaharai, S. Takagi, ”(110)-Surface Strained-SOI CMOS Devices”, IEEE Transaction of Electron Devices, 52, 3, p.367, 2005.

Next Page »

Extension Media websites place cookies on your device to give you the best user experience. By using our websites, you agree to placement of these cookies and to our Privacy Policy. Please click here to accept.