Part of the  

Solid State Technology

  and   

The Confab

  Network

About  |  Contact

Posts Tagged ‘STMicroelectronics’

Next Page »

Has SOI’s Turn Come Around Again?

Monday, October 10th, 2016

thumbnail

By David Lammers, Contributing Editor

When analyst Linley Gwennap is asked about the chances that fully-depleted silicon-on-insulator (FD-SOI) technology will make it in the marketplace, he gives a short history lesson.

First, he makes clear that the discussion is not about “the older SOI,” – the partially depleted SOI that required designers to deal with the so-called “kink effect.” The FD-SOI being offered by STMicroelectronics and Samsung at 28nm design rules, and by GlobalFoundries at 22nm and 12nm, is a different animal: a fully depleted channel, new IP libraries, and no kink effect.

Bulk planar CMOS transistor scaling came to an end at 28nm, and leading-edge companies such as Intel, TSMC, Samsung, and GlobalFoundries moved into the finFET realm for performance-driven products, said Gwennap, founder of The Linley Group (Mountain View, Calif.) and publisher of The Microprocessor Report, said,

While FD-SOI at the 28nm node was offered by STMicrelectronics, with Samsung coming in as a second source, Gwennap said 28nm FD-SOI was not differentiated enough from 28nm bulk CMOS to justify the extra design and wafer costs. “When STMicro came out with 28 FD, it was more expensive than bulk CMOS, so the value proposition was not that great.”

NXP uses 28nm FD-SOI for its iMX 7 and iMX 8 processors, but relatively few other companies did 28nm FD-SOI designs. That may change as 22nm FD-SOI offers a boost in transistor density, and a roadmap to tighter design rules.

“For planar CMOS, Moore’s Law came to a dead end at 28nm. Some companies have looked at finFETs and decided that the cost barrier is just too high. They don’t have anywhere to go; for a few years now those companies have been at 28nm, they can’t justify the move on to finFETs, and they need to figure out how they can offer something new to their customers. For those companies, taking a risk on FD-SOI is starting to look like a good idea,” he said.

A cautious view

Joanne Itow, foundry analyst at Semico Research (Phoenix), also has been observing the ups and downs of SOI technology over the last two decades. The end of the early heyday, marked by PD-SOI-based products from IBM, Advanced Micro Devices, Freescale Semiconductor, and several game system vendors, has led Itow to take a cautious, Show-Me attitude.

“The SOI proponents always said, ‘this is the breakout node,’ but then it didn’t happen. Now, they are saying the Fmax has better results than finFETs, and while we do see some promising results, I’m not sure everybody knows what to do with it. And there may be bottlenecks,” such as the design tools and IP cores.

Itow said she has talked to more companies that are looking at FD-SOI, and some of them have teams designing products. “So we are seeing more serious activity than before,” Itow said. “I don’t see it being the main Qualcomm process for high-volume products like the applications processors in smartphones. But I do see it being looked at for IoT applications that will come on line in a couple of years. And these things always seem to take longer than you think,” she said.

Sony Corp. has publicly discussed a GPS IC based on 28nm FD-SOI that is being deployed in a smartwatch sold by Huami, a Chinese brand, which is touting the long battery life of the watch when the GPS function is turned on.

GlobalFoundries claims it has more than 50 companies in various stages of development on its 22FDX process, which enters risk production early next year, and the company plans a 12nm FDX offering in several years.

IP libraries put together

The availability of design libraries – both foundation IP and complex cores – is an issue facing FD-SOI. Gwennap said GlobalFoundries has worked with EDA partners, and invested in an IP development company, Invecas, to develop an IP library for its FDX technology. “Even though GlobalFoundries is basically starting from scratch in terms of putting together an IP library, it doesn’t take that long to put together the basic IP, such as the interface cells, that their customers need.

“There is definitely going to be an unusual thing that probably will not be in the existing library, something that either GlobalFoundries or the customers will have to put together. Over time, I believe that the IP portfolio will get built out,” Gwennap said.

The salaries paid to design engineers in Asia tend to be less than half of what U.S.-based designers are paid, he noted. That may open up companies “with a lower cost engineering team” in India, China, Taiwan, and elsewhere to “go off in a different direction” and experiment with FD-SOI, Gwennap said.

Philippe Flatresses, a design architect at STMicro, said with the existing FDSOI ecosystem it is possible to design a complete SoC, including processor cores from ARM Ltd., high speed interfaces, USB, MIPI, memory controllers, and other IP from third-party providers including Synopsys and Cadence. Looking at the FD-SOI roadmap, several technology derivatives are under development to address the RF, ultra-low voltage, and other markets. Flatresses said there is a need to extend the IP ecosystem in those areas.

Wafer costs not a big factor

There was a time when the approximately $500 cost for an SOI wafer from Soitec (Grenoble, France) tipped the scales away from SOI technology for some cost-sensitive applications. Gwennap said when a fully processed 28nm planar CMOS wafer cost about $3,000 from a major foundry, that $500 SOI wafer cost presented a stumbling block to some companies considering FD-SOI.

Now, however, a fully-processed finFET wafer costs $7,000 or more from the major foundries, Gwennap said, and the cost of the SOI wafer is a much smaller fraction of the total cost equation. When companies compare planar FD-SOI to finFETs, that $500 wafer cost, Gwennap said, “just isn’t as important as it used to be. And some of the other advantages in terms of cost savings or power savings are pretty attractive in markets where cost is important, such as consumer and IoT products. They present a good chance to get some key design wins.”

Soitec claims it can ramp up to 1.5 million FD-SOI wafers a year with its existing facility in 18 months, and has the ability to expand to 3 million wafers if market demand expands.

Jamie Schaeffer, the FDX program manager at GlobalFoundries, acknowledges that the SOI wafers are three to four times more expensive than bulk silicon wafers. Schaeffer said a more important cost factor is in the mask set. A 22FDX chip with eight metal layers can be constructed with “just 39 mask layers, compared with 60 for a finFET design at comparable performance levels.” And no double patterning is required for the 22FDX transistors.

Technology advantages claimed

Soitec senior fellow Bich-Yen Nguyen, who spent much of her career at Freescale Semiconductor in technology development, claims several technical advantages for FD-SOI.

FD-SOI has a high transconductance-to-drain current ratio, is superior in terms of the short channel effect, and has a lower fringing and effective capacitance and lower gate resistance, due partly to a gate-first process approach to the high-k/metal gate steps, Nguyen said.

Back and forward biasing is another unique feature of FD-SOI. “When you apply body-bias, the fT and fmax curves shift to a lower Vt.  This is an additional benefit allowing the RF designer to achieve higher fT and fmax at much lower gate voltage (Vg) over a wider Vg range.  That is a huge benefit for the RF designer,” she said. Figure 1 illustrates the unique benefit of back-bias.

Figure 1. The unique benefit of back-bias is illustrated. Source: GlobalFoundries.

“To get the full benefit of body bias for power savings or performance improvement, the design teams must consider this feature from the very beginning of product development,” she said. While biasing does not require specific EDA tools, and can be achieve with an extended library characterization, design architects must define the best corners for body bias in order to gain in performance and power. And design teams must implement “the right set of IPs to manage body biasing,” such as a BB generator, BB monitors, and during testing, a trimming methodology.

Nguyen acknowledged that finFETs have drive-current advantages. But compared with bulk CMOS, FD-SOI has superior electrostatics, which enables scaling of analog/RF devices while maintaining a high transistor gain. And drive current increases as gate length is scaled, she said.

For 14/16 nm finFETs, Nguyen said the gate length is in the 25-30 nm range. The 22FDX transistors have a gate length in the 20nm range. “The very short gate length results in a small gate capacitance, and total lower gate resistance,” she said.

For fringing capacitance, the most conservative number is that 22nm FD-SOI is 30 percent lower than leading finFETs, though she said “finFETs have made a lot of progress in this area.”

Analog advantages

It is in the analog and RF areas that FD-SOI offers the most significant advantages, Nguyen said. The fT and fMAX of 350 and 300 GHz, respectively, have been demonstrated by GlobalFoundries for its 22nm FD-SOI technology. For analog devices, she claimed that FD-SOI offers better transistor mismatch, high intrinsic device gain (Gm/Gds ratio), low noise, and flexibility in Vt tuning. Figure 2 shows how 22FDX outperforms finFETs for fT/fMax.

Figure 2. 22FDX outperforms finFETs for fT/fMax. Source: GlobalFoundries.

“FDSOI is the only device architecture that meets all those requirements. Bulk planar CMOS suffers from large transistor mismatch due to random dopant fluctuation and low device gain due to poor electrostatics. FinFET technology improves on electrostatics but it lacks the back bias capability.”

The undoped channel takes away the random doping effect of a partially depleted (doped) channel, reducing variation by 50-60 percent.

Analog designers using FD-SOI, she said, have “the ability to tune the Vt by back-bias to compensate for process mismatch or drift, and to offer virtually any Vt desired. Near-zero Vt can also be achieved in FD-SOI, which enables low voltage analog design for low power consumption applications.”

“If you believe the future is about mobility, about more communications and low power consumption and cost sensitive IoT chips where analog and RF is about 50 percent of the chip, then FD-SOI has a good future.

“No single solution can fit all. The key is to build up the ecosystem, and with time, we are pushing that,” she said.

InvenSense Developers Conference Tackles Sensor Security, New Technologies

Monday, November 23rd, 2015

By Jeff Dorsch, Contributing Editor

The second day of the InvenSense Developers Conference saw presenters get down to cases – use cases for sensors.

There were track sessions devoted to mobile technology and the Internet of Things, with the latter featuring presentations on industrial and automotive applications, smart homes and drones, smartphones and tablet computers, and wearable electronics. InvenSense partner companies had their own track on New Technologies, fitting into the conference’s “Internet of Sensors” theme.

The conference also featured two developer tracks in parallel, providing five InvenSense presentations on its FireFly hardware and software, SensorStudio, and other offerings.

One of the presentations that wrapped up the conference on Wednesday afternoon (November 18) was given by Pim Tuyls, chief executive officer of Intrinsic-ID, the Dutch company that worked with InvenSense to develop the TrustedSensor product, a secure sensor-based authentication system incorporating the FireFly system-on-a-chip device.

TrustedSensor will be shipped to alpha customers in the first quarter of 2016 and will go out to beta customers in the second quarter of next year, according to Tuyls. “This is real,” he said.

The Intrinsic-ID founder briefly reviewed the company’s history, to start. It was spun out of Royal Philips in 2008 and is an independent company with venture-capital funding, Tuyls noted.

Intrinsic-ID was founded to provide “cyber physical security based on physically unclonable function,” or PUF, Tuyls said. “We invented PUF,” he added. “It has been vetted by security labs and government agencies,” among other parties.

Taking “The Trusted Sensor” as his theme, the Intrinsic-ID CEO said, “Sensors are the first line of defense. You want to make sure you can provide a certain level of security.”

It is critical to achieve “the right balance” in designing, fabricating, and installing sensors, with security, flexibility, and low footprint among the key considerations, according to Tuyls.

While whimsically describing PUF as “a magic concept,” Tuyls noted, “Chips are physically unique,” with no two completely alike due to manufacturing processes.

PUF can “extract a crypto key from any device,” he added. “You can authenticate any device.”

Intrinsic-ID has tested the PUF technology with a wide variety of silicon foundries, Tuyls said – namely, Cypress Semiconductor, GlobalFoundries, IBM, Intel, Renesas Electronics, Samsung Electronics, Taiwan Semiconductor Manufacturing, and United Microelectronics. It has been implemented by Altera, Microsemi, NXP Semiconductors, Samsung, and Synopsys, he added, and process nodes ranging from 180 nanometers down to 14nm have been tested.

Tuyls concluded by emphasizing the importance of sensor security for the Internet of Things. “We should not wait; we should not try to save a few cents,” he said. “It is important, but it is hard.”

Earlier in the day, attendees heard from Sam Massih, InvenSense’s director of wearable sensors. “There’s a wearable solution for every part of the body,” he commented.

“Step count isn’t enough,” Massih said. “You need context for data.” He cited the example of a user who goes to the gym three times a week and spends an hour on the elliptical trainer machine for one hour on each visit.

“That’s data that can be monetized,” he said.

InvenSense announced last month that it would enter the market for automotive sensors. Amir Panush, the company’s head of automotive and IoT industrial, said in his presentation, “Sensors need to be smart enough.”

The megatrends in automotive electronics include the use of motion sensors for safety in advanced driver-assistance systems (ADAS), the smart connected car, and tough emission restrictions, according to Panush.

“We have signed a deal with a Tier One partner,” Panush said, meaning a leading automotive manufacturer, without identifying the company. “We are ramping up internal R&D in automotive.” InvenSense is presently opening design centers focusing on the $5 trillion automotive market, he added.

InvenSense was founded in 2003 and went public in 2011. The company posted revenue of $372 million in fiscal 2015 with a net loss of $1.08 million (primarily due to charging $10.55 million in interest expense against net income), after being profitable for the previous four years. InvenSense gets more than three-quarters of its revenue from mobile sensors and has a growing business in IoT sensors.

Customers in Asia accounted for 63 percent of the company’s fiscal 2015 revenue, according to InvenSense’s 10-K annual report. The company spent $90.6 million on research and development, representing about 24 percent of its net revenue.

GlobalFoundries and TSMC make nearly all of InvenSense’s wafers. Assembly packaging of its microelectromechanical system (MEMS) devices and sensors is outsourced to Advanced Semiconductor Engineering, Amkor Technology, Lingsen Precision Industries, and Siliconware Precision Industries.

The company had 644 employees as of March 29, 2015, with nearly half of them involved in R&D.

STMicroelectronics is InvenSense’s primary competitor for consumer motion sensors, the 10-K states, while the company also competes with Analog Devices, Epson Toyocom, Kionix, Knowles, Maxim Integrated Products, MEMSIC, Murata Manufacturing, Panasonic, Robert Bosch, and Sony.

Samsung to put 10nm chips into mass production by end of 2016

Friday, May 22nd, 2015

thumbnail

By Jeff Dorsch, Contributing Editor

Samsung Semiconductor on Thursday announced that it will have 10-nanometer FinFET chips in volume production by the end of next year.

At an event in San Francisco, the Samsung Electronics subsidiary exhibited a 12-inch wafer with what it said were 10nm FinFET semiconductors. Over the next 18 months, Samsung will provide process design kits and multi-die wafers for the 10nm FinFET chips.

Samsung Semiconductor is also ramping up volume production of 14nm FinFET chips at its S1 wafer fabrication facility in South Korea and its S2 fab in Austin, Texas, while preparing the S3 fab in South Korea for 14nm FinFET volume production. In addition, GlobalFoundries will implement the Samsung 14nm FinFET process at its chip-making facilities in New York State.

“We are in business for 14-nanometer FinFET,” said Hong Hao, senior vice president for Samsung’s foundry business. “We have brought broad competition back into the foundry business.”

Samsung Foundry has closely matched Taiwan Semiconductor Manufacturing in providing 14nm and now 10nm chips.

Hao said Samsung will support “a broad range of applications” with chips coming out of its foundry fablines – consumer electronics, mobile devices, computing, networking, and data center infrastructure.

He also noted that Samsung is offering a 28nm fully-depleted silicon-on-insulator process, licensed from STMicroelectronics.

Samsung Semiconductor executives made brief presentations on other product areas for the chipmaker, and also reported on progress in constructing the company’s new facility in northern San Jose, Calif., which will be occupied this summer.

Blog review October 20, 2014

Monday, October 20th, 2014

Matthew Hogan of Mentor Graphics blogs about how automotive opportunities are presenting new challenges for IC verification. A common theme for safety systems involves increasingly complex ICs and the need for exceptional reliability.

Anish Tolia of Linde blogs that technology changes in semiconductor processing and demands for higher-purity and better-characterized electronic materials have driven the need for advanced analytical metrology. Apart from focusing on major assay components, which are the impurities detailed in a Certificate of Analysis (CoA), some customers are also asking that minor assay components or other trace impurities must be controlled for critical materials used in advanced device manufacturing.

Karey Holland of Techcet provides an excellent review of SEMI’s Strategic Materials Conference. The keynote presentation, “Materials Innovation for the Digital 6th Sense Era,” was by Matt Nowak of Qualcomm. He discussed both the vision of the Internet of Things (IoT), the required IC devices (including analog & sensors) and implications to materials (and cost to manufacture) from these new IC devices.

The age of the Internet of Things is upon us, blogs Pete Singer. There are, of course, two aspects of IoT. One is at what you might call the sensor level, where small, low power devices are gathering data and communicating with one another and the “cloud.” The other is the cloud itself. One key aspect will be security, even for low-level devices such as the web-connected light bulb. Don’t hack my light bulb, bro!

Linde Electronics has developed the TLIMS/SQC System. Anish Tolia writes that this system includes an information management database plus SQC/SPC software and delivers connectivity with SAP, electronically pulling order information from SAP to TLIMS and pushing CoA data from TLIMS to SAP.

Ed Korczynski blogs about how IBM researchers showed the ability to grow sheets of graphene on the surface of 100mm-diameter SiC wafers, the further abilitity to grow epitaxial single-crystalline films such as 2.5-μm-thick GaN on the graphene, the even greater ability to then transfer the grown GaN film to any arbitrary substrate, and the complete proof-of-manufacturing-concept of using this to make blue LEDs.

Phil Garrou says it’s been awhile since we looked at what is new in the polymer dielectric market so he checked with a number of dielectric suppliers – specifically Dow Corning, HD Micro and Zeon — and asked what was new in their product lines.

Karen Lightman, Executive Director, MEMS Industry Group, had the pleasure to learn more about the challenges and opportunities affecting MEMS packaging at a recent International Microelectronics Assembly and Packaging Society (IMAPS) workshop held in her hometown of Pittsburgh and at her alma mater, Carnegie Mellon University (CMU).

Ed Korczynski blogs that The Nobel Prize in Physics 2014 was awarded jointly to Isamu Akasaki, Hiroshi Amano, and Shuji Nakamura “for the invention of efficient blue light-emitting diodes which has enabled bright and energy-saving white light sources.”

Yes, GlobalFoundries is hot on FD-SOI. Yes, Qualcomm’s interested in it for IoT. Yes, ST’s got more amazing low-power FD-SOI results. These are just some of the highlights that came out of the Low Power Conference during Semicon Europa in Grenoble, France (7-9 October 2014) blogs Adele Hars.

Blog review September 22, 2014

Monday, September 22nd, 2014

Siobhan Kenney of Applied Materials reports that The Tech Museum of Innovation announced the ten recipients of the Tech Awards. Presented by Applied Materials, this is a global program honoring innovators who use technology to benefit humanity. These incredible Laureates are addressing some of the world’s most critical problems with creativity – in naming their organizations and in designing solutions to improve the way people live.

Jean-Pierre Aubert, RF Marketing Manager, STMicroelectronics says RF-SOI is good for more than integrating RF switches.  Other key functions typically found inside RF Front-End Modules (FEM) like power amplifiers (PA), RF Energy Management, low-noise amplifiers (LNA), and passives also benefit from integration.

Phil Garrou blogs Samsung finally announced that it has started mass producing 64 GB DDR4, dual Inline memory modules (RDIMMs) that use 3D TSV technology. The new memory modules are designed for use with enterprise servers and cloud base solutions as well as with data center solutions [link]. The release is timed to match the transition from DDR3 to DDR4 throughout the server market.

Stephen Whalley, Chief Strategy Officer, MEMS Industry Group, blogs about the inaugural MIG Conference Shanghai, September 11-12th, with their local partners, the Shanghai Industrial Technology Research Institute (SITRI) and the Shanghai Institute of Microsystem and Information Technology (SIMIT).  The theme was the Internet of Things and how the MEMS and Sensors supply chain needs to evolve to address the explosive growth in China.

SEMI praised the bipartisan effort in the United States House of Representatives to pass H.R. 2996, the Revitalize American Manufacturing and Innovation (RAMI) Act.  SEMI further urged the Senate to move quickly on the legislation that would create public private partnerships to establish institutes for manufacturing innovation.

Jeff Wilson, Mentor Graphics, writes that in integrated circuit (IC) design, we’re currently seeing the makings of a perfect storm when it comes to the growing complexity of fill. The driving factors contributing to the growth of this storm are the shrinking feature sizes and spacing requirements between fill shapes, new manufacturing processes that use fill to meet uniformity requirements, and larger design sizes that require more fill.

Zvi Or-Bach, president and CEO of MonolithIC 3D, blogs that at the upcoming 2014 IEEE S3S conference (October 6-9), MonolithIC 3D will unveil a breakthrough flow that is game-changing for 3D IC. For the first time ever monolithic 3D (“M3DI”) could be built using the existing fab and the existing transistor flow.

Blog review June 16, 2014

Monday, June 16th, 2014

An upcoming webcast will focus on The Rise of MEMS Sensors. Jay Esfandyari from STMicroelectronics will talk about how the introduction of MEMS technology into consumer markets has opened the floodgates with multiple MEMS – accelerometers, gyros, compasses, pressure sensors and microphones – in games such as the Wii and now in smartphones and tablets. Simone Severi from imec will Next, Simone Severi, lead for SiGe MEMS at imec, will discuss SiGe MEMS technology for monolithic integration on CMOS.

The Synopsys’ Galaxy Design Platform has been extended to support the Samsung-STMicroelectronics strategic agreement on 28nm FD-SOI. Adele Hars blogs that they’ve covered all the bases, so that designers going to Samsung’s foundry services for ST’s 28nm FD-SOI can hit the ground running.

Phil Garrou reports on the 16th biennial Symposium on Polymers, which was held this May in Wilmington DE. In this blog post, he analyzes presentations from Fraunhofer IZM, ASE and Hitachi Chemicals.

Jamie Girard, senior director, Public Policy, SEMI North America, blogs that with changes coming in Washington, SEMI has important work ahead supporting the innovators and job creators of this country. Advancing the goals of its members, SEMI advocates legislation in congress, targeting passage of the Commerce, Justice and Science Appropriations Act, increases to NSF and NIST funding and changes to R&D tax credits.

Zvi Or-Bach, President and CEO of MonolithIC 3D Inc. blogs that over the course of three major industry conferences (VLSI 2013, IEDM 2013 and DAC 2014), executives of Qualcomm voiced a call for monolithic 3D “to extend the semiconductor roadmap way beyond the 2D scaling” as part of their keynote presentations.

Prakash Arunkundrum, PwC Strategy and Operations Consulting Director blogs about improving financial predictability. He notes that there is continued evidence that despite spending several millions on IT transformations, improving internal planning processes, maturing supply chains, and streamlining product development processes, several companies still struggle with predicting their financial and operational performance.

Solid State Watch: May 30-June 5, 2014

Friday, June 6th, 2014
YouTube Preview Image

The Week in Review: May 16, 2014

Friday, May 16th, 2014

On May 14, 2014, it was announced that STMicroelectronics and Samsung Electronics signed an agreement on 28nm Fully Depleted Silicon-on-Insulator (FD-SOI) technology for multi-source manufacturing collaboration. The agreement includes ST’s fully developed process technology and design enablement ecosystem from its 300mm facility in Crolles, France. The Samsung 28nm FD-SOI process will be qualified in early 2015 for volume production.

Applied Materials announced its Applied Endura Volta CVD Cobalt system, the only tool capable of encapsulating copper interconnects in logic chips beyond the 28nm node by depositing precise, thin cobalt films.. The introduction of cobalt as a superior metal encapsulation film marks the most significant materials change to the interconnect in over 15 years.

Dow Corning introduced Dow Corning EE-3200 Low-Stress Silicone Encapsulant – the latest addition to its portfolio of advanced solutions designed to expand performance and durability of solar micro-inverters, power optimizers and other high value components.

Element Six today announced that its Gallium Nitride (GaN)-on-Diamond wafers have been proven by Raytheon Company to significantly outperform industry standard Gallium Nitride-on-Silicon Carbide (GaN-on-SiC) in RF devices.

A newly finalized Department of Defense (DoD) rule reduces the risk of counterfeit semiconductor products being used by our military by implementing needed safeguards in the procurement of semiconductors and other electronic parts.

Noel Technologies, a Silicon Valley specialty foundry offering process development and substrate fabrication, is now offering services for nanoimprint technology that reduce the costs of the nanoimprint stamps.

SEMATECH announced that researchers have reported progress which could significantly improve resist sensitivity by incorporating metal oxide nanoparticles for extreme ultraviolet (EUV) lithography, bringing the technology another step toward enabling the development of high performance resists required to enable EUV for high-volume manufacturing (HVM).

Mentor Graphics Corporation this week announced the new MicReD Industrial Power Tester 1500A for power cycling and thermal testing of electronics components to simulate and measure lifetime performance. The MicReD Industrial Power Tester 1500A tests the reliability of power electronic components that are increasingly used in industries such as automotive and transportation including hybrid and electrical vehicles and trains, power generation and converters, and renewable energy applications such as wind turbines.  It is the only commercially available thermal testing product that combines both power cycling and thermal transient measurements with structure function analysis while providing data for real-time failure-cause diagnostics.

Solid State Watch: May 9-15, 2014

Friday, May 16th, 2014
YouTube Preview Image

ST licenses 28nm FD-SOI to Samsung

Friday, May 16th, 2014

By Ed Korczynski, Sr. Technical Editor, SST/SemiMD

On May 14, 2014 it was announced that STMicroelectronics and Samsung Electronics signed an agreement on 28nm Fully Depleted Silicon-on-Insulator (FD-SOI) technology for multi-source manufacturing collaboration. The agreement includes ST’s fully developed process technology and design enablement ecosystem from its 300mm facility in Crolles, France. The Samsung 28nm FD-SOI process will be qualified in early 2015 for volume production.

“Building upon the existing solid relationship between ST and Samsung within the framework of the International Semiconductor Development Alliance, this 28nm FD-SOI agreement expands the ecosystem and augments fab capacity for ST and the entire electronics industry,” said Jean-Marc Chery, COO, STMicroelectronics. “We foresee further expansion of the 28nm FD-SOI ecosystem, to include the leading EDA and IP suppliers, which will enrich the IP catalog available for 28nm FD-SOI.”

According to Handel Jones, founder and CEO of International Business Strategies Inc. (IBS), “The 28nm node will be long-lived; we expect it to represent approximately 4.3 million wafers in the 2017 timeframe, and FD-SOI could capture at least 25 percent of this market.”

Table 1 shows IBS data estimating costs for different 28nm fab process technologies.

“We are pleased to announce this 28nm FD-SOI collaboration with ST. This is an ideal solution for customers looking for extra performance and power efficiency at the 28nm node without having to migrate to 20nm,” said Dr. Seh-Woong Jeong, executive vice president of System LSI Business, Samsung Electronics. “28nm process technology is a highly productive process technology and expected to have a long life span based on well-established manufacturing capabilities.”

In June 2012, ST announced that GLOBALFOUNDRIES had joined the FD-SOI party for the 28nm and 20nm nodes. However, though the name has since changed from “20nm” to “14nm” (Table 2), work continues nonetheless with GLOBALFOUNDRIES on 14nm FD-SOI with prototyping and IP validation vehicles planned to run by the end of this year. Samsung has so far only licensed the 28nm node technology from ST. A representative of GLOBALFOUNDRIES reached for comment on this news expressed welcome to Samsung as an additional supplier in the FD-SOI ecosystem.

“Leti continues its development of further generations and our technology and design results show great promise for the 14nm and 10nm nodes,” said Laurent Malier, CEO of CEA-Leti (Laboratory for Electronics and Information Technology). Leti and ST are not against finFET technology, but sees it as complementary to SOI. In fact the ecosystem plans to add finFETs to the FD-SOI platform for the 10nm node, at which point Taiwanese foundry UMC plans to join.

FD-SOI Substrate Technology

Soitec, a world leader in generating and manufacturing revolutionary semiconductor materials for the electronics and energy industries, supplies most of the world’s SOI wafers. Paul Boudre, COO of Soitec, commented, “Our FD-SOI wafers represent an incredible technology achievement, resulting from over 10 years of continuous research and high-volume manufacturing expertise. With our two fabs and our licensing strategy, the supply chain is in place and we are very excited by this opportunity to provide the semiconductor industry with our smart substrates in high volume to enable widespread deployment of FD-SOI technology.”

Soitec’s R&D of ultra-thin SOI was partly funded and facilitated by the major French program called “Investments for the Future.” Soitec has collaborated with CEA-Leti on process evolution and characterization, with IBM Microelectronics for device validation and collaboration, and with STMicroelectronics to industrialize and demonstrate the first products.

Boudre, in an exclusive interview with SST/SemiMD, explained, “For 28nm node processing we use a 25+-1nm buried oxide layer, which is reduced in thickness to 20+-1nm when going to the 14nm node and we don’t see any differences in the substrate production. However, for the 10nm node the buried oxide layer needs to be 15nm thin, and we will need some new process steps to be able to embed nMOS strain into substrates.”

—E.K.

Next Page »