Part of the  

Solid State Technology


The Confab


About  |  Contact

Posts Tagged ‘pitch’

EUVL Materials Readiness for HVM

Friday, June 2nd, 2017


By Ed Korczynski, Sr. Technology Editor

Extreme-Ultra-Violet Lithography (EUVL)—based on ~13.5nm wavelength EM waves bouncing off mirrors in a vacuum—will finally be used in commercial IC fabrication by Intel, Samsung, and TSMC starting in 2018. In a recent quarterly earning calls ASML reported a backlog of orders for 21 EUVL tools. At the 2017 SPIE Advanced Lithography conference, presentations detailed how the source and mask and resist all are near targets for next year, while the mask pellicle still needs work. Actinic metrology for mask inspection still remains a known expensive issue to solve.

Figure 1 shows minimal pitch line/space grids and contact-hole arrays patterned with EUVL at global R&D hub IMEC in Belgium, as presented at the recent 2017 IMEC Technology Forum. While there is no way with photolithography to escape the trade-offs of the Resolution/Line-Width-Roughness/Sensitivity (RLS) triangle, patterning at the leading edge of possible pitches requires application-specific etch integration. The bottom row of SEMs in this figure all show dramatic improvements in LWR through atomic-scale etch and deposition treatments to patterned sidewalls.

Fig.1: SEM plan-view images of minimum pitch Resolution and Line-Width-Roughness and Sensitivity (RLS) for both Chemically-Amplified Resist (CAR) and Non-Chemically-Amplified Resist (NCAR, meaning metal-oxide solution from Inpria) formulations, showing that excessive LWR can be smoothed by various post-lithography deposition/etch treatments. (Source: IMEC)

ASML has recently claimed that as an indication of continued maturity, ASML’s NXE:33×0 steppers have now collectively surpassed one million processed wafers to date, and only correctly exposed wafers were included in the count. During the company’s 1Q17 earnings call, it was reported that three additional orders for NXE:3400B steppers were received in Q1 adding  to a total of 21 in backlog, worth nearly US$2.5B.

At $117M each NXE:3400B, assuming 10 years useful life it costs $32,000 each day and assuming 18 productive hours/day and 80 wafers/hour then it costs $22 per wafer-pass just for tool depreciation. In comparison, a $40M argon-fluoride immersion (ArFi) stepper over ten years with 21 available hours/day and 240 wafers/hour costs $2.2 per wafer-pass for depreciation. EUVL will always be an expensive high-value-add technology, even though a single EUVL exposure can replace 4-5 ArFi exposures.

Fabs that delay use of EUVL at the leading edge of device scaling will instead have to buy and facilitize many more ArFi tools, demanding more fab space and more optical lithography gases. SemiMD spoke with Paul Stockman, Linde Electronics’ Head of Market Development, about the global supply of specialty neon and xenon gas blends:  “Xenon is only a ppm level component of the neon-blend for Kr and Ar lasers, so there should be no concerns with Xenon supply for the industry. In our modeling we’ve realized the impact of multi-patterning on gas demand, and we’ve assumed that the industry would need multi-patterning in our forecasts.” said Stockman.

“From the Linde perspective, we manage supply carefully to meet anticipated customer demand,” reminded Stockman. “We recently added 40 million liters of neon capacity in the US, and continue to add significant supply with partners so that we can serve our customers regardless of the EUV scenario.” (Editor’s note: reported by SemiMD here.)

At SPIE Advanced Lithography 2017, SemiMD discussed multi-patterning process flows with Uday Mitra and Regina Freed of Applied Materials. “We need a lot of materials engineering now,” explained Freed. “We need new gap-fills and hard-masks, and we may need new materials for selective deposition. Regarding the etch, we need extreme selectivity with no damage, and ability to get into the smallest features to take out just one atomic layer at a time.”

Reminding us that IC fabs must be risk-averse when considering technology options, Mitra (formerly with Intel) commented, “You don’t do a technology change and a wafer size change at the same time. That’s how you risk manage, and you can imagine with something like EUVL that customers will first use it for limited patterning and check it out.”

Figure 2 lists the major issues in pattern-transfer using plasma etch tools, along with the process variables that must be controlled to ensure proper pattern fidelity. Applied Materials’ Sym3 etch chamber features hardware that provides pulsed energy at dual frequencies along with low residence time of reactant byproducts to allow for precise tuning of process parameters no matter what chemistry is needed.

Fig.2: Patterning issues and associated etch process variables which can be used for control thereof. (Source: Applied Materials)

Andrew Grenville, CEO of resist supplier Inpria, in an exclusive interview with SemiMD, commented on the infrastructure readiness for EUVL volume production. “We are building up our pilot line facility in Corvallis, Oregon. The timing for that is next year, and we are putting in place plans to continue to scale up the new materials at the same times as the quality control systems such as functional QC.” The end-users ask for quality control checks of more parameters, putting a burden on suppliers to invest in more metrology tools and even develop new measurement techniques. Inpria’s resist is based on SnOx nanoparticles, which provide for excellent etch resistance even with layers as thin as 20nm, but required the development of a new technique to measure ppb levels of trace metals in the presence of high tin signals.

“We believe that there is continued opportunity for improvement in the overall patterning performance based on the ancillaries, particularly in simplifying the under-layers. One of the core principles of our material is that we’re putting the ‘resist’ back in the resist,” enthused Grenville. “We can show the etch contrast of our material can really improve the Line-Width Roughness of the patterns because of what you can do in etch, and it’s not merely smoothing the resist. We can substantially improve the outcome by engineering the stack and the etch recipe using completely different chemistry than could be used with chemically-amplified resist.”

The 2017 EUVL Workshop (2017 International Workshop on EUV Lithography) will be held June 12-15 at The Center for X-ray Optics (CXRO) at Lawrence Berkeley National Laboratory in Berkeley, CA. This workshop, now in its tenth year, is focused on the fundamental science of EUV Lithography (EUVL). Travel and hotel information as well as on-line registration is available at

[DISCLOSURE:  Ed Korczynski is also Sr. Analyst for TECHCET responsible for the Critical Materials Report (CMR) on Photoresists, Extensions & Ancillaries.]


Edge Placement Error Control in Multi-Patterning

Thursday, March 2nd, 2017


By Ed Korczynski, Sr. Technical Editor

SPIE Advanced Lithography remains the technical conference where the leading edge of minimum resolution patterning is explored, even though photolithography is now only part of the story. Leading OEMs continue to impress the industry with more productive ArFi steppers, but the photoresist suppliers and the purveyors of vacuum deposition and etch tools now provide most of the new value-add. Tri-layer-resist (TLR) stacks, specialty hard-masks and anti-reflective coatings (ARC), and complex thin-film depositions and etches all combine to create application-specific lithography solutions tuned to each critical mask.

Multi-patterning using complementary lithography—using argon-fluoride immersion (ArFi) steppers to pattern 1D line arrays plus extreme ultra-violet (EUV) tools to do line cuts—is under development at all leading edge fabs today. Figure 1 shows that edge placement error (EPE) in lines, cut layers, and vias/contacts between two orthogonal patterned layers can result in shorts and opens. Consequently, EPE control is critical for yield within any multi-patterning process flow, including litho-etch-litho-etch (LELE), self-aligned double-patterning (SADP) and self-aligned quadruple-patterning (SAQP).

Fig.1: Plan view schematic of 10nm half-pitch vertical lines overlaid with lower horizontal lines, showing the potential for edge-placement error (EPE). (Source: Y. Borodovsky, SPIE)

Happening the day before the official start of SPIE-AL, Nikon’s LithoVision event featured a talk by Intel Fellow and director of lithography hardware solutions Mark Phillips on the big picture of how the industry may continue to pattern smaller IC device features. Regarding the timing of Intel’s planned use of EUV litho technology, Phillips re-iterated that, “It’s highly desirable for the 7nm node, but we’ll only use it when it’s ready. However, EUVL will remain expensive even at full productivity, so 193i and multi-patterning will continue to be used. In particular we’ll need continued improvement in the 193i tools to meet overlay.”

Yuichi Shibazaki— Nikon Fellow and the main architect of the current generation of Nikon steppers—explained that the current generation of 193i steppers, featuring throughputs of >200 wafers per hour, have already been optimized to the point of diminishing returns. “In order to improve a small amount of performance it requires a lot of expense. So just improving tool performance may not decrease chip costs.” Nikon’s latest productivity offering is a converted alignment station as a stand-alone tool, intended to measure every product wafer before lithography to allow for feed-forward tuning of any stepper; cost and cost-of-ownership may be disclosed after the first beta-site tool reaches a customer by the end of this year.

“The 193 immersion technology continues to make steady progress, but there are not as many new game-changing developments,” confided Michael Lercel, Director of Strategic Marketing for ASML in an exclusive interview with SemiMD. “A major theme of several SPIE papers is on EPE, which traditionally we looked at as dependent upon CD and overlay. Now we’re looking at EPE in patterning more holistically, with need to control the complexity with different error-variables. The more information we can get the more we can control.”

At LithoVision this year, John Sturtevant—SPIE Fellow, and director of RET product development in the Design to Silicon Division at Mentor Graphics—discussed the challenges of controlling variability in multi-layer patterning. “A key challenge is predicting and then mitigating total EPE control,” reminded Sturtevant. “We’ve always paid attention to it, but the budgets that are available today are smaller than ever. Edge-placement is very important ” At the leading edge, there are multiple steps within the basic litho flow that induce proximity/local-neighbor effects which must be accounted for in EDA:  mask making, photoresist exposure, post-exposure bake (PEB), pattern development, and CD-SEM inspection (wherein there is non-zero resist shrinkage).

Due to the inherent physics of EUV lithography, as well as the atomic-scale non-uniformities in the reflective mirrors focusing onto the wafer, EUV exposure tools show significant variation in exposure uniformities. “For any given slit position there can be significant differences between tools. In practice we have used a single model of OPC for all slit locations in all scanners in the fab, and that paradigm may have to change,” said Sturtevant. “It’s possible that because the variation across the scanner is as much as the variation across the slit, it could mean we’ll need scanner-specific cross-slit computational lithography.” More than 3nm variation has been seen across 4 EUVL steppers, and the possible need for tool-specific optical proximity correction (OPC) and source-mask optimization (SMO) would be horrible for managing masks in HVM.

Thin Films Extend Patterning Resolution

Applied Materials has led the industry in thin-film depositions and etches for decades, and the company’s production proven processing platforms are being used more and more to extend the resolution of lithography. For SADP and SAQP MP, there are tunable unit-processes established for sidewall-spacer depositions, and chemical downstream etching chambers for mandrel pull with extreme material selectivity. CVD of dielectric and metallic hard-masks when combined with highly anisotropic plasma etching allows for device-specific and mask-specific pattern transfers that can reduce the line width/edge roughness (LWR/LER) originally present in the photoresist. Figure 2 from the SPIE-AL presentation “Impact of Materials Engineering on Edge Placement Error” by Regina Freed, Ying Zhang, and Uday Mitra of Applied Materials, shows LER reduction from 3.4 to 1.3 nm is possible after etch. The company’s Sym3 chamber features very high gas conductance to prevent etch byproducts from dissociation and re-deposition on resist sidewalls.

Fig.2: 3D schematics (top) and plan view SEM images (bottom) showing that control of plasma parameters can tune the byproducts of etch processes to significantly reduce the line-width roughness (LWR) of minimally scaled lines. (Source: Applied Materials)

TEL’s new SAQP spacer-on-spacer process builds on the work shown last year, using oxide as first spacer and TiO2 as second spacer. Now TEL is exploring silicon as the mandrel, then silicon-nitride as the first spacer, and titanium-oxide as second spacer. This new flow can be tuned so that all-dry etch in a single plasma etch chamber can be used for the final mandrel pull and pattern transfer steps.

Coventor’s 3D modeling software allows companies to do process integration experiments in virtual space, allowing for estimation of yield-losses in pattern transfer due to variations in side-wall profiles and LER. A simulation of 9 SRAM cells with 54 transistors shows that photoresist sidewall taper angle determines both the size and the variability of the final fins. The final capacitance of low-k dielectric in dual-damascene copper metal interconnects can be simulated as a function of the initial photoresist profile in a SAQP flow.