Part of the  

Solid State Technology


The Confab


About  |  Contact

Posts Tagged ‘NCCAVS’

3DIC Technology Drivers and Roadmaps

Monday, June 22nd, 2015


By Ed Korczynski, Sr. Technical Editor

After 15 years of targeted R&D, through-silicon via (TSV) formation technology has been established for various applications. Figure 1 shows that there are now detailed roadmaps for different types of 3-dimensional (3D) ICs well established in industry—first-order segmentation based on the wiring-level/partitioning—with all of the unit-processes and integration needed for reliable functionality shown. Using block-to-block integration with 5 micron lines at leading international IC foundries such as GlobalFoundries, systems stacking logic and memory such as the Hybrid Memory Cube (HMC) are now in production.

Fig. 1: Today’s 3D technology landscape segmented by wiring-level, showing cross-sections of typical 2-tier circuit stacks, and indicating planned reductions in contact pitches. (Source: imec)

“There are interposers for high-end complex SOC design with good yield,” informed Eric Beyne, Scientific Director Advanced Packaging & Interconnect for imec in an exclusive interview with Solid State Technology. ““For a systems company, once you’ve made the decision to go 3D there’s no way back,” said Beyne. “If you need high-bandwidth memory, for example, then you’re committed to some sort of 3D. The process is happening today.” Beyne is scheduled to talk about 3D technology driven by 3D application requirements in the imec Technology Forum to be held July 13 in San Francisco.

Adaptation of TSV for stacking of components into a complete functional system is key to high-volume demand. Phil Garrou, packaging technologist and SemiMD blogger, reported from the recent ConFab that Hynix is readying a second generation of high-bandwidth memory (HBM 2) for use in high performance computing (HPC) such as graphics, with products already announced like Pascal from Nvidia and Greenland from AMD.

For a normalized 1 cm2 of silicon area, wide-IO memory needs 1600 signal pins (not counting additional power and ground pins) so several thousand TSV are needed for high-performance stacked DRAM today, while in more advanced memory architectures it could go up by another factor of 10. For wide-IO HVM-2 (or Wide-IO2) the silicon consumed by IO circuitry is maybe 6 cm2 today, such that a 3D stack with shorter vertical connections would eliminate many of the drivers on the chip and would allow scaling of the micro-bumps to perhaps save a total of 4 cm2 in silicon area. 3D stacks provide such trade-offs between design and performance, so the best results are predicted for 3DICs where the partitioning can be re-done at the gate or transistor level. For example, a modern 8-core microprocessor could have over 50% of the silicon area consumed by L3-cache-memory and IO circuitry, and moving from 2D to 3D would reduce total wire-lengths and interconnect power consumptions by >50%.

There are inherent thresholds based on the High:Width ratio (H:W) that determine costs and challenges in process integration of TSV:

-    10:1 ratio is the limit for the use of relatively inexpensive physical vapor deposition (PVD) for the Cu barrier/seed (B/S),

-    20:1 ratio is the limit for the use of atomic-layer deposition (ALD) for B/S and electroless deposition (ELD) for Cu fill with 1.5 x 30 micron vias on the roadmap for the far future,

-    30:1 ratio and greater is unproven as manufacturable, though novel deposition technologies continue to be explored.

TSV Processing Results

The researchers at imec have evaluated different ways of connecting TSV to underlying silicon, and have determined that direct connections to micro-bumps are inherently superior to use of any re-distribution layer (RDL) metal. Consequently, there is renewed effort on scaling of micro-bump pitches to be able to match up with TSV. The standard minimum micro-bump pitch today of 40 micron has been shrunk to 20, and imec is now working on 10 micron with plans to go to 5 micron. While it may not help with TSV connections, an RDL layer may still be needed in the final stack and the Cu metal over-burden from TSV filling has been shown by imec to be sufficiently reproducible to be used as the RDL metal. The silicon surface area covered by TSV today is a few percents not 10s of percents, since the wiring level is global or semi-global.

Regarding the trade-offs between die-to-wafer (D2W) and wafer-to-wafer (W2W) stacking, D2W seems advantageous for most near-term solutions because of easier design and superior yield. D2W design is easier because the top die can be arbitrarily smaller silicon, instead of the identically sized chips needed in W2W stacks. Assuming the same defectivity levels in stacking, D2W yield will almost always be superior to W2W because of the ability to use strictly known-good-die. Still, there are high-density integration concepts out on the horizon that call for W2W stacking. Monolithic 3D (M3D) integration using re-grown active silicon instead of TSV may still be used in the future, but design and yield issues will be at least comparable to those of W2W stacking.

Beyne mentioned that during the recent ECTC 2015, EV Group showed impressive 250nm overlay accuracy on 450mm wafers, proving that W2W alignment at the next wafer size will be sufficient for 3D stacking. Beyne is also excited by the fact the at this year’s ECTC there was, “strong interest in thermo-compression bonding, with 18 papers from leading companies. It’s something that we’ve been working on for many years for die-to-wafer stacking, while people had mistakenly thought that it might be too slow or too expensive.”

Thermal issues for high-performance circuitry remain a potential issue for 3D stacking, particularly when working with finFETs. In 2D transistors the excellent thermal conductivity of the underlying silicon crystal acts like a built-in heat-sink to diffuse heat away from active regions. However, when 3D finFETs protrude from the silicon surface the main path for thermal dissipation is through the metal lines of the local interconnect stack, and so finFETs in general and stacks of finFETs in particular tend to induce more electro-migration (EM) failures in copper interconnects compared to 2D devices built on bulk silicon.

3D Designs and Cost Modeling

At a recent North California Chapter of the American Vacuum Society (NCCAVS) PAG-CMPUG-TFUG Joint Users Group Meeting discussing 3D chip technology held at Semi Global Headquarters in San Jose, Jun-Ho Choy of Mentor Graphics Corp. presented on “Electromigration Simulation Flow For Chip-Scale Parametric Failure Analysis.” Figure 2 shows the results from use of a physics-based model for temperature- and residual-stress-aware void nucleation and growth. Mentor has identified new failure mechanisms in TSV that are based on coefficient of thermal expansion (CTE) mismatch stresses. Large stresses can develop in lines near TSV during subsequent thermal processing, and the stress levels are layout dependent. In the worst cases the combined total stress can exceed the critical level required for void nucleation before any electrical stressing is applied. During electrical stress, EM voids were observed to initially nucleate under the TSV centers at the landing-pad interfaces even though these are the locations of minimal current-crowding, which requires proper modeling of CTE-mismatch induced stresses to explain.

Fig. 2: Calibration of an Electronic Design Automation (EDA) tool allows for accurate prediction of transistor performance depending on distance from a TSV. (Source: Mentor Graphics)

Planned for July 16, 2015 at SEMICON West in San Francisco, a presentation on “3DIC Technology Past, Present and Future” will be part of one of the side Semiconductor Technology Sessions (STS). Ramakanth Alapati, Director of Packaging Strategy and Marketing, GLOBALFOUNDRIES, will discuss the underlying economic, supply chain and technology factors that will drive productization of 3DIC technology as we know it today. Key to understanding the dynamic of technology adaptation is using performance/$ as a metric.

Safe CMP slurries for future IC materials

Wednesday, April 29th, 2015


By Ed Korczynski, Sr. Technical Editor, Solid State Technology

New chemical-mechanical planarization (CMP) processes for new materials planned to be used in building future IC devices are now in research and development (R&D). Early data on process trade-offs as well as on environmental, health, and safety (EHS) aspects were presented at the CMP Users Group (of the Northern California Chapter of The American Vacuum Society) meeting, held in Albany, New York on April 16 of this year in collaboration with the College of Nanoscale Science and Engineering (CNSE) SUNY Polytechnic Institute and SEMATECH.

Mike Corbett, principle with Linx Consulting, presented his company’s forecast on CMP consumable materials growth for both logic and memory. “We’re no longer in the era of 2D scaling. Right now the semiconductor industry is scaling through the use of novel materials and 3D structures. It started with memory cells going vertical for storage structures. All of these technologies rely on CMP as a key enabler:  for 3D NAND there’ll be new tungsten, TSV need new copper, and transistors need CMP for high-k/metal-gate processing.”

Corbett estimates the current global market for pre-interconnect CMP consumables—slurries, pads, and conditioning disks—at >$US1.5B annually with steady growth on the horizon. While the fabricated cost/wafer at the leading edge is estimated to increase by 25-60% when moving to the next leading-edge node, the cost of CMP consumables should only increase by 12-14%. The Figure shows the specific example of 2D NAND wafer cost increasing by 60% in moving from 20nm- to 16nm-node production, while the fab’s CMP costs increase just ~12%. Until the IC HVM industry begins using materials other than Si/SiGe for transistor channels it seems that CMP costs will be well controlled.

Fig.1: Cost modeling shows that 2D NAND memory fab cost/wafer increases 65% when moving from 20nm- to 16nm-node production, while the cost of CMP consumable materials may increase only 12% for that fab. (Source: Linx Consulting)

Alternate channel materials toxicity in CMP

With alternate channel materials on the horizon for future logic transistor, III-V materials such as gallium-arsenide (GaAs), gallium-indium-phosphide (GaInP), and indium-phosphide (InP) are now in R&D which leads to questions regarding direct process costs as well as indirect EHS costs. Hsi-An Kwong, SEMATECH EHS Program Manager, provided an important overview of these issues in his presentation on “Out-gassing from III-V Wafer Processing.” Much of the concern involves the possible reaction and release of toxic hydrides such as arsine, and phosphine. SEMATECH worked with imec to monitor hydrides produced during CMP processes for high-mobility compound semiconductors.

With 1.5% H2O2 in a relatively low-pH slurry, phosphine was measured on the tool from InP but not from GaInP. Use of higher pH with the same 1.5% H2O2 resulted in no phosphine from InP, but arsine outgassing from GaAs. Use of the highest pH resulted in no outgassing of phosphine or arsine. “When we develop the CMP process, particularly when moving to HVM we need to study the layers on the wafer and the slurry used to evaluate if outgassing will be an issue,” explained Kwong. “FTIR is the metrology instrument needed to be able to distinguish between different evolved hydride species.” HVM fab personnel working on or near CMP tools would have to wear personal breathing apparatus if processes evolve hydrides; for example, the SEMATECH/CNSE continuous exposure EHS specification allows a maximum human exposure level of just 1.25 ppb arsine.

In technical sessions at SEMICON West in San Francisco last year, SEMATECH presented on EHS issues with CMP of III-V materials in high-volume manufacturing (HVM). Toxic hydride gases evolve during direct CMP and during over-polish of contacts. Metallic arsenic could potentially build-up on tools over time, and will have to be treated in CMP waste water. To minimize risks, dedicated CMP tools will likely be needed for R&D and for HVM.

Extension Media websites place cookies on your device to give you the best user experience. By using our websites, you agree to placement of these cookies and to our Privacy Policy. Please click here to accept.