Part of the  

Solid State Technology

  and   

The Confab

  Network

About  |  Contact

Posts Tagged ‘ASML Holding’

What’s the Next-Gen Litho Tech? Maybe All of Them

Thursday, February 25th, 2016

By Jeff Dorsch, Contributing Editor

The annual SPIE Advanced Lithography symposium in San Jose, Calif., hasn’t offered a clear winner in the next-generation lithography race. It’s becoming clearer, however, that 193i immersion and extreme-ultraviolet lithography will co-exist in the future, while directed self-assembly, nanoimprint lithography, and maybe even electron-beam direct-write technology will fit into the picture, too.

At the same time, plasma deposition and etching processes are assuming a greater interdependence with 193i, especially when it comes to multiple patterning, such as self-aligned double patterning, self-aligned quadruple patterning, and self-aligned octuple patterning (yes, there is such a thing!).

“We’ve got to go down to the sub-nanometer level,” Richard Gottscho, Lam Research’s executive vice president of global products, said Monday morning in his plenary presentation at the conference. “We must reduce the variability in multiple patterning,” he added.

Gottscho touted the benefits of atomic level processing in continuing to shrink IC dimensions. Atomic level deposition has been in volume production for a decade or more, he noted, and atomic level etching is emerging as an increasingly useful technology.

When it comes to EUV, “it’s a matter of when, not if,” the Lam executive commented. “EUV will be complementary with 193i.”

Anthony Yen, director of nanopatterning technology in the Infrastructure Division of Taiwan Semiconductor Manufacturing, followed Gottscho in the plenary session. “The fat lady hasn’t sung yet, but she’s on the stage,” he said of EUV.

Harry Levinson, senior director of GlobalFoundries, gave the opening plenary presentation, with the topic of “Evolution in the Concentration of Activities in Lithography.” He was asked after his presentation, “When is the end?” Levinson replied, “We’re definitely not going to get sub-atomic.”

With that limit in mind, dozens of papers were presented this week on what may happen before the semiconductor industry hits the sub-atomic wall.

There were seven conferences within the symposium, on specific subjects, along with a day of classes, an interactive poster session, and a two-day exhibition.

The Alternative Lithographic Technologies conference was heavy on directed self-assembly and nanoimprint lithography papers, while also offering glimpses at patterning with tilted ion implantation and multiphoton laser ablation lithography.

“Patterning is the battleground,” said David Fried, Coventor’s chief technology officer, semiconductor, in an interview at the SPIE conference. He described directed self-assembly as “an enabler for optical lithography.”

Mattan Kamon of Coventor presented a paper on Wednesday afternoon on “Virtual fabrication using directed self-assembly for process optimization in a 14nm DRAM node.”

DSA could be used in conjunction with SAQP or LELELELE, according to Fried. While some lithography experts remain leery or skeptical about using DSA in high-volume manufacturing, the Coventor CTO is a proponent of the technology’s potential.

“Unit process models in DSA are not far-fetched,” he said. “I think they’re pretty close.  The challenges of EUV are well understood. DSA challenges are a little less clear. There’s no ‘one solution fits all’ with DSA.” Fried added, “There are places where DSA can still win.”

Franklin Kalk, executive vice president of technology for Toppan Photomasks, is open to the idea of DSA and imprint lithography joining EUV and immersion in the lithography mix. “It will be some combination,” he said in an interview, while adding, “It’s a dog’s breakfast of technologies. Don’t ever count anything out.”

Richard Wise, Lam’s technical managing director in the company’s Patterning, Global Products Groups CTO Office, said EUV, when ready, will likely be complementary with multipatterning for 7 nanometer.

Self-aligning quadruple patterning, for example, was once considered “insanity” in the industry, yet it is a proven production technology now, he said.

While EUV technology is “very focused on one company,” ASML Holding, there is a consensus at SPIE that EUV’s moment is at hand, Wise said. Intel’s endorsement of the technology and dedication to advancing it speaks volumes of EUV’s potential, he asserted.

“Lam’s always excelled in lot-to-lot control,” an area of significant concern, Wise said, especially with all of this week’s talk about process variability.

What will be the final verdict on the future of lithography technology? Stay tuned.

ASML Details Advances in DUV, Metrology, EUV

Thursday, February 25th, 2016

thumbnail

By Jeff Dorsch, Contributing Editor

ASML Holding is glad to talk about its continuing progress in extreme-ultraviolet lithography technology. But first, the company has some information about its deep-ultraviolet scanners, as well.

ASML continues to ship its TWINSCAN NXT: 1980Di immersion lithography systems, which are capable of processing 275 wafers per hour, according to Michael Lercel, ASML’s director of strategic marketing.

Since shipments began last year, the 1980Di is exhibiting overlay numbers that are “slightly better than expected,” Lercel said Wednesday at the SPIE Advanced Lithography conference in San Jose, Calif. ASML aimed to make the 193i litho system “ a little bit more robust” than its predecessor, the TWINSCAN NXT: 1970Ci, he added. The 1970Ci can be upgraded in the field to the 1980Di’s capabilities, according to the company.

The 1980Di can be utilized in a combination of lithography techniques, including single exposure, lithography-etch-lithography-etch, sidewall spacers, and self-aligned double patterning, Lercel said. It offers the kind of variability control needed for self-aligned quadruple patterning, he added.

The ASML executive also addressed the company’s new YieldStar 350E metrology system, which he said can “correct for overlay errors” and “apply corrections to upstream and downstream problems,” using “a lot of overlay data.”

On the EUV front, Lercel said ASML has made “a lot of progress in the last 12 to 18 months.” At its facilities in Veldhoven, the Netherlands, the company has been able to operate a power source for its EUV systems at 200 watts “for one hour, with full dose control,” he noted.

That’s approaching its high-volume manufacturing target of 250W, according to Lercel. ASML continues to predict its EUV scanners will move into volume production applications in the 2018-19 timeframe, he said.

Intel and Samsung Electronics this week reported running their EUV power sources at 80W over extended periods.

The new TWINSCAN NXE:3350B scanners are now being shipped with 125W power sources, Lercel noted. ASML has demonstrated 80 percent availability in the field, including scheduled downturns, bringing EUV close to matching immersion lithography, Lercel said. Regarding availability, “we need to do better in consistency,” he acknowledged.

ASML has “multiple EUV systems at multiple customers,” Lercel said. In addition to Intel and Samsung, the company’s EUV scanners are also being used at GlobalFoundries, SK Hynix, and Taiwan Semiconductor Manufacturing, among others not yet identified by the equipment vendor.

ASML this week reported reaching a deal with Nippon Control System on integrating optical proximity correction to mask data preparation on a common platform.

Laser Suppliers Move Past the Neon Gas Crisis

Wednesday, February 24th, 2016

By Jeff Dorsch, Contributing Editor

That neon gas shortage? So 2015.

The supply issue continues, as armed conflict heats up in eastern Ukraine, site of a plant that supplies a majority of the neon gas used in the world. Cymer and Gigaphoton, the big suppliers of excimer lasers for lithography that use neon as a buffer gas, have worked around the shortage, including the recycling of gas exhaust from their lasers.

“Prices have somewhat stabilized,” said Joe Ganeshan, sales manager for Gigaphoton USA. “We’re still in a crisis.”

Pricing for neon gas last year rose by 10 to 20 times, according to Ted Cacouris, product marketing director at the Cymer subsidiary of ASML Holding. One gas supplier in Ukraine was behind more than half of the world’s supply, and transporting the gas out of the conflict zone became haphazard, he noted.

The spike in neon gas prices peaked in 2015’s late summer and early fall, Cacouris said. As semiconductor manufacturers adjusted to the shortage, “prices started rolling over,” he added.

Cymer and Gigaphoton both implemented recycling programs in response to the supply situation, dramatically reducing neon gas consumption for their customers. Ganeshan estimated his company’s customers saved around $90 million a year as a result, while Cacouris put the figure at about $200 million.

In addition to reducing neon-gas consumption, Gigaphoton is moving to eliminate the use of helium in chipmaking, citing the U.S. government’s plans to cut off supply of the unrenewable gas in the near future. Used as a purging gas in argon fluoride 193i immersion lithography scanners, helium will be replaced with nitrogen, Ganeshan said.

Putting the neon-gas crisis in the rearview mirror, Cymer and Gigaphoton are turning to other pressing issues as suppliers of the light sources used in immersion and extreme-ultraviolet lithography systems.

Gigaphoton claimed to have improved its market share in excimer lasers for semiconductor manufacturing to 60 percent or more in 2015.

Cymer’s Cacouris cast doubt on that figure, without disclosing his company’s market share last year. Japan-based Gigaphoton greatly benefited from the exchange rate on the yen, gaining a 20 percent pricing advantage as a result, he asserted.

He described Gigaphoton’s claim as “a bit optimistic,” adding, “They’ve had some progress; they’ve had a few wins.” Cacouris vowed, “We’re going to do a lot better this year.”

Before the SPIE Advanced Lithography conference in San Jose, Calif., Gigaphoton announced that it is establishing new support bases in Dalian and Xiamen, China. The company also said it has received supplier awards from United Microelectronics and Taiwan Semiconductor Manufacturing.

Optimism Reigns at SPIE Lithography Conference, Despite Challenges

Tuesday, February 23rd, 2016

thumbnail

By Jeff Dorsch, Contributing Editor

Semiconductor manufacturing and design is growing increasingly complicated and just plain hard. Everyone knows that. The bad news is it’s only going to get worse.

Relax, there are many smart people gathered in San Jose, Calif., this week for the SPIE Advanced Lithography Symposium to discuss the challenges and figure out how to surmount them.

The changes required in lithography and related technologies to continue IC scaling promise to be painful and costly. Mitigating the pain and the cost is a common theme at the SPIE conference.

The annual SPIE Advanced Lithography conference is often dominated by discussions on the state of extreme-ultraviolet lithography (EUVL). In presentations on Sunday and Monday, the theme was generally the same as 2015 – EUV is making progress, yet it’s still not ready for high-volume semiconductor manufacturing.

Intel Fellow Mark Phillips said the technology has seen “two years of solid progress,” speaking Sunday at Nikon’s LithoVision 2016 event. He added, “There’s no change in Intel’s position: We’ll use EUV only when it’s ready.”

Anthony Yen of Taiwan Semiconductor Manufacturing covered the 30-year history of EUV development in his Monday morning presentation at the SPIE conference. Asked during the question-and-answer session following the presentation on when the world’s largest silicon foundry will use EUV, Yen stuck to the official company line of implementing EUV in production for the 7-nanometer process node, after some involvement at 10nm.

Seong-Sam Kim of Samsung Electronics also sees EUV realizing its long-aborning potential at 7nm, a node at which “argon fluoride multipatterning will hit the wall.” He touted the 80-watt power source Samsung has achieved with its NXE-3300 scanner from ASML Holding, saying it had maintained that level over more than eight months.

Intel’s Britt Turkot reported 200W source power “has been achieved recently,” and said the tin droplet generator in its ASML scanner has been significantly improved, increasing its typical lifetime by three times. EUV has demonstrated “solid progress,” she said, including ASML’s development of a membrane pellicle for EUV reticles.

While work with the ASML scanner on Intel’s 14nm pilot fab line has been “encouraging,” Turkot said, she added, “We do need to keep the momentum going.” Intel sees EUV entering into volume production with 7nm chips, according to Turkot. “It will be used when it’s ready,” she said.

EUV technology has shown “good progress” in productivity, while its availability and cost considerations have “a long way to go,” Turkot concluded, adding, “We need an actinic solution for the long term.”

An industry consensus has emerged that EUV will be used with ArF 193i immersion lithography in the near future, and this trend is likely to continue for some time, according to executives at the SPIE conference. There may also be wider adoption of directed self-assembly (DSA) and nanoimprint lithography technology, among other alternative lithography technologies.

Mark Phillips of Intel pointed to complementary implementation of EUV and 193i. “We must use EUV carefully,” he said. “We need to replace three-plus 193i masks.” Phillips added, “EUV can’t be applied everywhere affordably. 193i will continue to be used whenever possible.”

Nikon executives touted the capabilities of their new NSR-S631E ArF immersion scanner, introduced just before the SPIE conference. The new scanner can turn out 250 wafers per hour, and can be pushed to 270 wph with certain options, according to Nikon’s Ryoichi Kawaguchi.

Yuichi Shibazaki of Nikon said the company will next year introduce the S63xE scanner, improving on S631E.

For all the challenges of transitioning to 7nm and beyond, executives at SPIE remain optimistic about solving the issues of 193i multipatterning, DSA, and EUV. Harry Levinson of GlobalFoundries said in response to a question, “The ultimate resource is the human mind.”