Part of the  

Solid State Technology

  Network

About  |  Contact

Posts Tagged ‘TSMC’

Next Page »

Blog review July 21, 2014

Monday, July 21st, 2014

Matthew Hogan, a Product Marketing Manager for Calibre Design Solutions at Mentor Graphics, blogs that SoC Reliability Verification Doesn’t Just Happen, You Know. He says the best way to verify multi-IP, multiple power domain SoCs, is with the Unified Power Format (UPF), which enables a repeatable, comprehensive, and efficient design verification methodology, using industry standards, at the transistor level.

Dick James, Senior Technology Analyst, Chipworks, has a TSMC-fabbed 20-nm part in-house, and is looking forward to the analysis results. Wondering what changes TSMC has made from the 28-nm process, Dick says he expects mostly a shrink of the latter process, with no change to the materials of the high-k stack, though maybe to the sequence.

Ed Korczynski continues his theme of “Moore’s Law is Dead” with a third installment that looks at when that might happen. He says that at ~4nm pitch we run out of room “at the bottom,” after patterning costs explode at 45nm pitch.

Vivek Bakshi, EUV Litho, Inc. blogs about The 2014 EUVL Workshop which was held late last month amid some positive highlights and lots of R&D updates. The keynote talks this year were from Intel, Gigaphoton and Toshiba.

In his 201st Insights from The Leading Edge (IFTLE) blog post, Phil Garrou takes a look at some of the presentations at this year’s ConFab. Subramani Kengeri, Vice President, Advanced Technology Architecture for GlobalFoundries discussed the techno-economics of the semiconductor industry. Gary Patton, VP of IBM Semiconductor Research & Development Center addressed “Semiconductor Technology: Trends, Challenges, & Opportunities.” Adrian Maynes, 450C program manager, discussed the “450mm Transition Toward Sustainability: Facility & Infrastructure Requirements.”

Zvi Or-Bach, President and CEO of MonolithIC 3D Inc., blogs that over the course of three major industry conferences (VLSI 2013, IEDM 2013 and DAC 2014), executives of Qualcomm voiced a call for monolithic 3D “to extend the semiconductor roadmap way beyond the 2D scaling” as part of their keynote presentations.

Scouting report for materials at end of the road: 2013 ITRS

Monday, May 12th, 2014

Ed Korczynski, Sr. Technical Editor, SST/SemiMD

The IC fabrication industry is approaching the end of the road for device miniaturization, with both atomic and economic limits looming on the horizon. New materials are widely considered as key to the future of profitable innovation in ICs, so everyone from process engineers to business pundits needs to examine the Emerging Research Materials (ERM) chapter of the just published 2013 edition of the International Technology Roadmap for Semiconductors (ITRS).

The 2013 ITRS covers both near-term (2014-2020) and long-term (2020 onward) perspectives on what materials and processes would be desired to build ideal ICs (Fig. 1, Table ERM15). However, to properly understand the information in the current edition we need to consider the changes in the IC fab industry since 1992 when the first edition of the ITRS’s predecessor was published as the U.S. National Technology Roadmap for Semiconductors (NTRS).

Fig. 1

Twenty-two years ago, the industry had dozens of fabs working on next-generation technology, and with lithographic scaling dominating innovation there was broad consensus on gradual materials evolutions. Today, the industry has 3 logic fabs and about as many memory lines pushing processes to smaller geometries, and each fab may use significantly different revolutionary materials. The result today is that there is little consensus on direction for new materials, and at best we can quantify the relative benefits of choosing one or another of the many options available.

In fact, with just a few players left in the game, there is much to lose for any one player to disclose strategic plans such as the use of revolutionary materials. Mark Thirsk, managing partner with specialty materials analysts Linx Consulting, commented, “We built our business based on anonymizing and generalizing the world, and then predicting the future based on big categorical buckets. But now there are a very few number of people pushing the boundaries and we’re being asked to model specific fab processes such as those for Intel or TSMC.”

For all of the above reasons, the current ITRS might be better understood as a scouting report that quantifies the roughness of the terrain when our current roads end. Exotic materials such as graphene and indium-gallium-phosphide may be used as alternate materials for the Si channels in transistors, novel stacks of atomic-layers may be used as electrical contacts, and spintronics and single-electron devices may one day replace DRAM and Flash chips for solid-state memory chips. However,  “significant challenges” exist in integrating any of these new technologies into high-volume manufacturing.

In the near-term, Cu wires clad with various metal barriers are projected to provide the best overall performance for on-chip interconnects.  As stated in the 2013 Executive Summary, “Unfortunately no new breakthroughs are reported for interconnections since no viable materials with resistivity below copper exist. However, progress in manipulation of edgeless wrapped materials (e.g., carbon nanotubes, graphene combinations etc.) offer the promise of ‘ballistic conductors,’ which may emerge in the next decade.”

Specialty Materials Suppliers

Fig. 2

Figure 2 (Figure ERM5) shows the inherent complexity involved in the stages of developing a new chemical precursor for use in commercial IC production. The chapter summarizes the intrinsic difficulty of atomic-scale R&D for future chips as follows:

A critical ERM factor for improving emerging devices, interconnects, and package technologies is the ability to characterize and control embedded interface properties. As features approach the nanometer scale, fundamental thermodynamic stability considerations and fluctuations may limit the ability to fabricate materials with tight dimensional distributions and controlled useful material properties.

In addition to daunting technical issues with pre-cursor R&D, the business model for chemical suppliers is being strained by industry consolidation and by dimensional shrinks. Consolidation means that each fab has unique pre-cursor requirements, so there may be just one customer for a requested chemistry and no ability to get a return on the investment if the customer decides to use a different approach.

Shrinks down to atomic dimensions means that just milliliters instead of liters of chemistry may be needed. For example, atomic-layer deposition (ALD) precursor R&D requires expertise and investment in molecular- and chemical-engineering, and so significant sunk costs to create any specialty molecule in research quantities. “We’ll have an explosion of precursors required based on proprietary IP held by different companies,” reminds Thirsk. “The people who are being asked to develop the supply-chain of ever increasing specifications are simultaneously being squeezed on margin and volumes.”

For materials such as Co, Ru, La, and Ti-alloys to be used in fabs we need to develop more than just deposition and metrology steps. We will also likely require atomic-level processes for cleaning and etch/CMP, which can trigger a need for yet another custom material solution.

Established chemical suppliers—such as Air Liquide, Dow, DuPont, Linde, Praxair, and SAFC—run international businesses serving many industries. IC manufacturing is just a small portion of their businesses, and they can afford to simply walk-away from the industry if the ROI seems unattractive. “We’re finding more and more that, for example in wet cleaning chemistry, the top line of the market is flat,” cautioned Thirsk. “You can find some specialty chemistries that provide better profits, but the dynamics of the market are such that there’s reduced volume and reduced profitability. So where will the innovation come from?”

Alternate Channel Materials

With finFETs and SOI now both capable of running in fully-depleted mode, alternative materials to strained silicon are being extensively explored to provide higher MOSFET performance at reduced power. Examples include III-V semiconductors, Ge, graphene, carbon nanotubes, and other semiconductor nanowires (NW). To achieve complimentary MOS high performance, co-integration of different materials (i.e. III-V and Ge) on Si may be necessary. Significant materials issues such as defect reduction, interface chemistry, metal contact resistivity, and process integration must be addressed before such improvements can be achieved.

Nano-wire transistors

Top down fabricated nanowires (NW) are one-dimensional structures that can be derived from two-dimensional finFETs. Patterned and etched <5nm Si NW have been reported to have room temperature quantum oscillatory behavior with back-gate voltage with a peak mobility approaching ∼900 cm2/Vs. Despite extensive R&D, grown Si NW demonstrate no performance improvements over patterned-and-etched NW, and controlled growth in desired locations remains extraordinarily challenging. Overall, significant challenges must be overcome for NW to be integrated in high density, particularly when targeting laterally placed NW with surround gates and low resistance contacts.

—E.K.

Solid State Watch: April 18-25, 2014

Friday, April 25th, 2014

Blog review April 7, 2014

Monday, April 7th, 2014

Pete Singer reveals the lineup of presenters for Session 1 of The ConFab, to be held June 22-25 in Las Vegas, and provides summaries of their talks. Speakers will be Vijay Ullal, COO, Fairchild Semiconductor; Dave Anderson, President and CEO, Novati Technologies; Gopal Rao, Senior Director Business Development, SEMATECH; Adrian Maynes, Program Manager, F450C; and Bill McClean, President, IC Insights.

Phil Garrou blogs about a variety of diverse issues this week, including GLOBALFOUNDRIES’ potential purchase of IBM’s semiconductor business, Altera’s separate deals with Intel and TSMC, why FinFET could be more expensive that more conventional CMOS strategies, as view by Handle Jones of IBS, and a new joint development program between ASE and Inotera focused on 3D IC packaging.

Blog review March 17, 2014

Monday, March 17th, 2014

Pete Singer is delighted to report that Dr. Roawen Chen, Senior Vice Present of global operations at Qualcomm, has accepted our invitation to deliver the keynote talk at The ConFab, on Monday June 23rd. As previously announced, Dr. Gary Patton, Vice President of IBM’s Semiconductor Research and Development Center in East Fishkill, New York, will deliver the keynote on the second day, on Tuesday June 24th.

Phil Garrou takes a look at what was reported at SEMI’s 2.5/3D IC Summit held in Grenoble, focusing on presentations from Gartner, GLOBALFOUNDRIES, TSMC and imec. He writes that GLOBALFOUNDRIES has been detailing their imminent commercialization of 2.5/3D IC for several years, and provide a chart showing the current status report. TSMC offered a definition of their supply chain model where OSATS are now integrated.

Bharat Ramakrishnan of Applied Materials writes about the importance of wearable electronics in the Internet of Things (IoT) era, and the role that precision materials engineering will play. He note that one key part of the wearables ecosystem that is still in need of new innovations is the battery. Two of the biggest challenges to overcome are the thick form factor due to battery size, and the lack of adequate battery life, thus requiring frequent recharging.

Blog review January 21, 2014

Tuesday, January 21st, 2014

Zvi Or-Bach, President and CEO of MonolithIC 3D weighs in on the battle of Intel vs TSMC in the foundry space, after conflicting stories appeared. One said that Intel had a huge pricing advantage over TSMC, and a second story noted TSMC’s boast that it was “far superior” to Intel and Samsung as a partner fab.

Adele Hars looks back at 2013 from the SOI perspective. In this “Part 2” post, she focuses on developments that last year brought in the areas of RF-SOI and SOI-FinFETs. Part 1 focused on the general SOI picture. Stayed tuned for a look at 2014.

Phil Garrou reports on some of the key 3DIC presentations from the IEEE Internal Electron Devices Meeting (IEDM), held in December in Washington, D.C. , focusing on papers from Micron, TSMC, Tohoku Univ., NC State and ASET. He said that Micron’s Naga Chandrasekaran addressed challenges in future memory manufacturing for both front end 3D NAND and back end 3DIC stacking, noting that he does not see any of the newer memory technologies making inroads against conventional DRAM or NAND in the next decade.

The Week In Review: Jan. 10, 2014

Friday, January 10th, 2014

This week in Las Vegas, the 2014 International Consumer Electronics Show focused on the Internet of Things, displaying many connected gadgets and services. This year’s show featured more than 3,200 exhibitors, many of which were excited to show off new Internet-enable devices.

As of December 2013, Samsung had the most installed wafer capacity with nearly 1.9 million 200mm-equivalent wafers per month.  That represented 12.6 percent of the world’s total capacity and most of it used for the fabrication of DRAM and flash memory devices.  Next in line was the largest pure-play foundry in the world TSMC with about 1.5 million wafers per month capacity, or 10.0% of total worldwide capacity.  Following TSMC were memory IC suppliers Micron, Toshiba/SanDisk, and SK Hynix.

Xicato announced that it has relocated its San Jose headquarters to accommodate a new manufacturing line for the company’s next generation of products. The new 24 thousand-square-foot space is more than double the size of Xicato’s previous San Jose facility. The privately held company has invested millions of dollars in equipment and resources to meet the increasing global demand for its LED modules.

Toshiba Corporation announced the development of “Bright Mode,” a CMOS image sensor technology that allows smartphones and tablets to record full HD video at 240 frames per second (fps), the industry’s highest frame rate. “Bright Mode” realizes high quality slow motion playback.

The TOWA Corporation of Japan, a supplier of packaging equipment for semiconductor, electronics and LED industries, has decided to expand their activities in Europe with an Innovation Center for Packaging Development and announced the launch of TOWA Europe B.V.

Eliminating the Challenges of Giga-Scale Circuit Design With Nano-Scale Technologies

Monday, November 25th, 2013

By Dr. Lianfeng Yang, Vice President of Marketing, ProPlus Design Solutions, Inc., San Jose, Calif.

These days, circuit designers are talking about the increasing giga-scale circuit size. Semiconductor CMOS technology downscaled to nano-scale, forcing the move to make designing for yield (DFY) mandatory and compelling them to re-evaluate how they design and verify their chips.

That’s what brought more than 150 engineers from foundries and fabless semiconductor companies in and around Shanghai, China, in early November to hear a visionary talk from Dr. Chenming Hu, TSMC distinguished professor of the Graduate School at the University of California, Berkeley. Professor Hu, giving the keynote during a ProPlus seminar, offered a perspective on the emerging technology known as 3D FinFET transistor that he and his team invented. It was a great day for all attendees as many of them were able to ask in-depth questions about the challenges at advanced nodes such as 28nm and 16nm.

Dr. Chenming Hu, TSMC distinguished professor of the Graduate School at the University of California, Berkeley talks at the ProPlus seminar.

Professor Hu, this year’s recipient of the Phil Kaufman Award from the IEEE Council for EDA and the EDA Consortium, is a long-time friend and advisor of ProPlus’. Several members of our team, including Zhihong Liu, ProPlus’ executive chairman, were part of a research group he led with Professor Ping K. Ko that invented the first industry-standard MOSFET SPICE model known as BSIM3. (I’ll save the details on this for ProPlus’ next blog.)

One day after the seminar in Shanghai, we were in Taiwan for a similar seminar, though Professor Hu did not join us. This group of engineers gave us a similar assessment of their challenges and ongoing concerns.

The general consensus from both groups is that they would benefit from having more closely integrated modeling, SPICE simulation and DFY technologies. Their perspective is one that is generally shared throughout the semiconductor industry and the EDA industry is starting to respond.

Many of the attendees we talked with over the two days commented on the challenges of good design. That is, modeling small transistors, then putting multi-billion nano-scale transistors together and making it functional, a challenge for the foundries as well because they have to manufacture these small transistors. That’s a function of having good yield.

Process variations create difficulties when accurately modeling nano-scale transistors because they create multi-dimensional uncertainties on device characteristics. Moving to 16- and 14nm nodes, 3D FinFET structure adds in more modeling challenges due to its new structure and complicated parasitics. As such, circuit designers are requested to understand the coverage, usage and limitations of foundry SPICE models.

They’re also challenged with finding the means to put a huge number of elements together. EDA vendors have taken notice here as well because they face the challenge of simulating a large-sized circuit with high enough accuracy and affordable simulation time.

Traditional FastSPICE is showing its age and limitations. The technology trend and advanced circuit designs require highly accurate SPICE simulator that can handle giga-scale size circuit simulations. Parallelization technology is the key, but no commercial SPICE simulator with patched parallel solutions can meet the needs. The trend we see is having a giga-scale SPICE simulator, with parallelization built-in from the ground up delivering giga-scale capacity with no accuracy compromises and significant speedup over traditional SPICE. At 16- and 14nm, FinFET circuit design sizes increase dramatically due to its 3D structure and complex parasitics. Giga-scale SPICE meets such challenges. No small feat, as the circuit designers pointed out.

Using nano-scale elements to design giga-scale circuits presents its own challenges, mainly due to variability, a DFY issue. Having a large amount of extremely small elements –– nanometer-sized transistors –– tightly packed together is a variability nightmare because every tiny variation could cause the function, performance or yield to change on the whole product. Such challenge increases with the technology advancement.

Caption: The design and manufacturing challenges for foundries, fabless design houses and EDA vendors. (Figure sources: Intel Tri-Gate transistors and Intel i7 CPU).

Such variation can be accounted for in the design phase. It’s a matter of how to accurately model small variations, efficiently simulate the large-sized circuit with small variation on each small element, and with variation modeling and simulation capabilities, how to improve designs to achieve optimum performance and yield.

Yes, a huge challenge, but critical for advanced IC designs. Depending on the number of instances to be varied, simulating the impact of variations, essentially Monte Carlo simulation, would require a different number of samplings, ranging from thousands (3σ) to billions (>6σ).

Consequently, the keys here are accurate modeling, giga-scale simulation and advanced high sigma sampling technologies that can reduce the number of sampling by orders of magnitude with the same level of accuracy. FinFET creates additional challenges as it requires very high sigma simulations (e.g., 7σ) for SRAM designs.

The answer as we heard from the circuit designers in China and Taiwan and others is that the only way out of these challenges is to more tightly integrate tools for nano-scale modeling, giga-scale SPICE simulation and DFY.

Dr. Lianfeng Yang currently serves as the Vice President of Marketing at ProPlus Design Solutions, Inc. Prior to co-founding ProPlus, he was a senior product engineer at Cadence Design Systems leading the product engineering and technical support effort for the modeling product line in Asia. Dr. Yang has over 40 publications and holds a Ph.D. degree in Electrical Engineering from the University of Glasgow in the U.K.

The Week in Review: Nov. 15, 2013

Friday, November 15th, 2013

SEMI Standards task forces are working on encouraging the industry to collaborate on key issues like the technical parameters for 450mm silicon wafers, physical interfaces, carriers, assembly and packaging. To date, SEMI has 13 task forces working on 450mm and has published nineteen (19) 450mm standards with 14 more in the pipeline. Here’s an update on the newly-published SEMI 450mm specifications as well as the other 450mm SEMI Standards.

Xilinx announced  first customer shipment of the semiconductor industry’s first 20nm product manufactured by TSMC, and the PLD industry’s first 20nm All Programmable device.  Xilinx UltraScale devices deliver an ASIC-class advantage  with  the industry’s only ASIC-class programmable architecture coupled with the Vivado ASIC-strength design suite and recently introduced UltraFast design methodology. The UltraScale devices enable 1.5X – 2X more realizable system-level performance and integration for customers, equivalent to a generation ahead of the competition.

SEMI also announced this that the deadline for presenters to submit an abstract for the 25th annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC) is extended to November 28.  ASMC, which takes place May 19-21, 2014 in Saratoga Springs, New York, will feature technical presentations of more than 80 peer-reviewed manuscripts covering critical process technologies and fab productivity.

FlipChip International announced the 100% acquisition of Millennium Microtech (Shanghai) – (MMS), a provider of fully integrated semiconductor packaging and testing services situated in the Zhang Jiang Hi- Tech Park, Pudong New Area, Shanghai, China. The MMS name will be changed to FlipChip International.

Tosoh Corporation announced today that Tosoh Group company Tosoh SMD, Inc., will implement a major expansion at its Grove City, Ohio, operations to develop, produce, and support physical vapor deposition (PVD) sputtering targets for the new 450mm wafer semiconductor market. The expansion is the biggest investment in Tosoh SMD’s history and is meant to position the company for the next generation products and technologies. It will include facilities, novel equipment and tools for manufacturing, and a sputter deposition tool for R&D and evaluation purposes. The first stage is slated to be ready by December 2014.

Blog Review November 5 2013

Tuesday, November 5th, 2013

New blogs delve into the packaging technology of Apple’s A7, the road ahead for bulk FinFETs as defined by imec, with EUV is a gating factor for 450mm, split-manufacturing for U.S. trusted IC (TIC) program and Japan’s growing market for equipment and materials.

For the 10nm node and beyond, transistor research efforts are focused on high mobility designs with Ge and III-V channel, reducing VDD supply voltage as well as the subthreshold slope in transistors and optimizing multi-Vt designs. Pete Singer reports on work underway at imec in Belgium.

At the IEEE 3DIC in San Francisco Dan Radack of the Institute of Defense Analysis gave an update on the IARPA trusted Integrated Chip Program. Phil Garrou reports how it is now focused on split-manufacturing with FEOL done off-shore and BEOL done by trusted facilities in the U.S.

The A7 is manufactured by Samsung on a high-κ metal gate (HKMG) 28 nm process and the chip includes over 1 billion transistors on a die 102 mm2 in size. Phil Garrou reports on observations on the Package-on-Package (PoP) design as noted by fellow blogger Dick James. In an earlier blog, Dick described how the Apple A7 is using Samsung’s 28nm process.

Simon Favre of Mentor Graphics notes how EUV could possibly be a gating factor for 450mm. “Would you put in 450mm immersion steppers, and then yank them out to put in EUV before they’re fully depreciated?” he asks.

In advance of Semicon Japan, to be hold December 4-6 at the Makuhari Messe, SEMI’s Dan Tracy and Yoichiro Ando report that restructuring and consolidation has led to a new focus for the semiconductor manufacturers in Japan. As a result, the semiconductor equipment market in Japan will experience double-digit growth in both 2013 and 2014, driven by higher spending for memory production and in spending increases planned for the manufacturing of power semiconductors and “More than Moore” semiconductor technologies. Total equipment spending in Japan is estimated to reach $4.6 billion by 2014. Combining this with the $8 billion-plus spending on semiconductor materials, Japan represents a $12 billion market in 2014 for the suppliers of equipment and materials.

Next Page »