Part of the  

Solid State Technology

  and   

The Confab

  Network

About  |  Contact

Posts Tagged ‘lithography’

Next Page »

Molecular Modeling of Materials Defects for Yield Recovery

Monday, March 21st, 2016

thumbnail

By Ed Korczynski, Sr. Technical Editor

New materials are being integrated into High Volume Manufacturing (HVM) of semiconductor ICs, while old materials are being extended with more stringent specifications. Defects within materials cause yield losses in HVM fabs, and engineers must identify the specific source of an observed defect before corrective steps can be taken. Honeywell Electronic Materials has been using molecular modeling software provided by Scienomics to both develop new materials and to modify old materials. Modeling allowed Honeywell to uncover the origin of subtle solvation-based film defects within Bottom Anti-Reflective Coatings (BARC) which were degrading yield in a customer’s lithographic process module.

Scienomics sponsored a Materials Modeling and Simulations online seminar on February 26th of this year, featuring Dr. Nancy Iwamoto of Honeywell discussing how Scienomics software was used to accelerate response to a customer’s manufacturing yield loss. “This was a product running at a customer line,” explained Iwamoto, “and we needed to find the solution.” The product was a Bottom Anti-Reflective Coating (BARC) organo-silicate polymer delivered in solution form and then spun on wafers to a precise thickness.

Originally observed during optical inspection by fab engineers as 1-2 micron sized vague spots in the BARC, the new defect type was difficult to see yet could be correlated to lithographic yield loss. The defects appeared to be discrete within the film instead of on the top surface, so the source was likely some manner of particle, yet filters did not capture these particles.

The filter captured some particles rich in silicon, as well as other particles rich in carbon. Sequential filtration showed that particles were passing through impossibly small pores, which suggested that the particles were built of deformable gel-like phases. The challenge was to find the material handling or processing situation, which resulted in thermodynamically possible and kinetically probable conditions that could form such gels.

Fig: Materials Processes and Simulations (MAPS) gives researchers access to visualization and analysis tools in a single user interface together with access to multiple simulation engines. (Source: Scienomics)

Molecular modeling and simulation is a powerful technique that can be used for materials design, functional upgrades, process optimization, and manufacturing. The Figure shows a dashboard for Scienomics’ modeling platform. Best practices in molecular modeling to find out-of-control parameters in HVM include a sequential workflow:

  • Build correct models based on experimental observables,
  • Simulate potential molecular structures based on known chemicals and hierarchical models,
  • Analyze manufacturing variabilities to identify excursion sources, and
  • Propose remedy for failure elimination.

Honeywell Electronic Materials researchers had very few experimental observables from which to start:  phenomenon is rare (yet effects yield), not filterable, yet from thermodynamic hydrolysis parameters it must be quasi-stable. Re-testing of product and re-examination of Outgoing Quality Control (OQC) data at the Honeywell production site showed that the molecular weight of the product was consistent with the desired distribution. There was also an observed BARC thickness increase of ~1nm on the wafer associated with the presence of these defects.

Using the modeling platform, Honeywell looked at the solubility parameters for different small molecular chains off of known-branched back-bone centers. Gel-like agglomerations could certainly be formed under the wrong conditions. Once the agglomerations form, they are not very stable so they can probably dis-aggregate when being forced through a filter and then re-aggregate on the other side.

What conditions could induce gel formation? After a few weeks of modeling, it was determined that temperature variations had the greatest influence on the agglomeration, and that variability was strongest at the ~250°K recommended for storage. Storage at 230°K resulted in measurably worse agglomeration, and any extreme in heating/cooling ramp rate tended to reduce solubility.

Molecular modeling was used in a forensic manner to find that the root cause of gel-like defects was related to thermal history:

*   Thermodynamics determined the most likely oligomers that could agglomerate,

*   Temperature-dependent solubility models determined which particles would reach wafers.

Because of the on-wafer BARC thickness increase of ~1nm, fab engineers could use all of the molecular modeling information to trace the temperature variation to bottles installed in the lithographic track tool. The fab was able to change specifications for the storage and handling of the BARC bottles to bring the process back into control.

EUV Resists and Stochastic Processes

Friday, March 4th, 2016

thumbnail

By Ed Korczynski, Sr. Technical Editor

In an exclusive interview with Solid State Technology during SPIE-AL this year, imec Advanced Patterning Department Director Greg McIntyre said, “The big encouraging thing at the conference is the progress on EUV.” The event included a plenary presentation by TSMC Nanopatterning Technology Infrastructure Division Director and SPIE Fellow Anthony Yen on “EUV Lithography: From the Very Beginning to the Eve of Manufacturing.” TSMC is currently learning about EUVL using 10nm- and 7nm-node device test structures, with plans to deploy it for high volume manufacturing (HVM) of contact holes at the 5nm node. Intel researchers confirm that they plan to use EUVL in HVM for the 7nm node.

Recent improvements in EUV source technology— 80W source power had been shown by the end of 2014, 185W by the end of 2015, and 200W has now been shown by ASML—have been enabled by multiple laser pulses tuned to the best produce plasma from tin droplets. TSMC reports that 518 wafers per day were processed by their ASML EUV stepper, and the tool was available ~70% of the time. TSMC shows that a single EUVL process can create 46nm pitch lines/spaces using a complex 2D mask, as is needed for patterning the metal2 layer within multilevel on-chip interconnects.

To improve throughput in HVM, the resist sensitivity to the 13.54nm wavelength radiation of EUV needs to be improved, while the line-width roughness (LWR) specification must be held to low single-digit nm. With a 250W source and 25 mJ/cm2 resist sensitivity an EUV stepper should be able to process ~100 wafer-per-hour (wph), which should allow for affordable use when matched with other lithography technologies.

Researchers from Inpria—the company working on metal-oxide-based EUVL resists—looked at the absorption efficiencies of different resists, and found that the absorption of the metal oxide based resists was ≈ 4 to 5 times higher than that of the Chemically-Amplified Resist (CAR). The Figure shows that higher absorption allows for the use of proportionally thinner resist, which mitigates the issue of line collapse. Resist as thin as 18nm has been patterned over a 70nm thin Spin-On Carbon (SOC) layer without the need for another Bottom Anti-Reflective Coating (BARC). Inpria today can supply 26 mJ/cm2 resist that creates 4.6nm LWR over 140nm Depth of Focus (DoF).

To prevent pattern collapse, the thickness of resist is reduced proportionally to the minimum half-pitch (HP) of lines/spaces. (Source: JSR Micro)

JEIDEC researchers presented their summary of the trade-off between sensitivity and LWR for metal-oxide-based EUV resists:  ultra high sensitivity of 7 mJ/cm2 to pattern 17nm lines with 5.6nm LWR, or low sensitivity of 33 mJ/cm2 to pattern 23nm lines with 3.8nm LWR.

In a keynote presentation, Seong-Sue Kim of Samsung Electronics stated that, “Resist pattern defectivity remains the biggest issue. Metal-oxide resist development needs to be expedited.” The challenge is that defectivity at the nanometer-scale derives from “stochastics,” which means random processes that are not fully predictable.

Stochastics of Nanopatterning

Anna Lio, from Intel’s Portland Technology Development group, stated that the challenges of controlling resist stochastics, “could be the deal breaker.” Intel ran a 7-month test of vias made using EUVL, and found that via critical dimensions (CD), edge-placement-error (EPE), and chain resistances all showed good results compared to 193i. However, there are inherent control issues due to the random nature of phenomena involved in resist patterning:  incident “photons”, absorption, freed electrons, acid generation, acid quenching, protection groups, development processes, etc.

Stochastics for novel chemistries can only be controlled by understanding in detail the sources of variability. From first-principles, EUV resist reactions are not photon-chemistry, but are really radiation-chemistry with many different radiation paths and electrons which can be generated. If every via in an advanced logic IC must work then the failure rate must be on the order of 1 part-per-trillion (ppt), and stochastic variability from non-homogeneous chemistries must be eliminated.

Consider that for a CAR designed for 15mJ/cm2 sensitivity, there will be just:

145 photons/nm2 for 193, and

10 photons/nm2 for EUV.

To improve sensitivity and suppress failures from photon shot-noise, we need to increase resist absorption, and also re-consider chemical amplification mechanisms. “The requirements will be the same for any resist and any chemistry,” reminded Lio. “We need to evaluate all resists at the same exposure levels and at the same rules, and look at different features to show stochastics like in the tails of distributions. Resolution is important but stochastics will rule our world at the dimensions we’re dealing with.”

—E.K.

Many Mixes to Match Litho Apps

Thursday, March 3rd, 2016

thumbnail

By Ed Korczynski, Sr. Technical Editor

“Mix and Match” has long been a mantra for lithographers in the deep-sub-wavelength era of IC device manufacturing. In general, forming patterns with resolution at minimum pitch as small as 1/4 the wavelength of light can be done using off-axis illumination (OAI) through reticle enhancement techniques (RET) on masks, using optical proximity correction (OPC) perhaps derived from inverse lithography technology (ILT). Lithographers can form 40-45nm wide lines and spaces at the same half-pitch using 193nm light (from ArF lasers) in a single exposure.

Figure 1 shows that application-specific tri-layer photoresists are used to reach the minimum resolution of 193nm-immersion (193i) steppers in a single exposure. Tighter half-pitch features can be created using all manner of multi-patterning processes, including Litho-Etch-Litho-Etch (LELE or LE2) using two masks for a single layer or Self-Aligned Double Patterning (SADP) using sidewall spacers to accomplish pitch-splitting. SADP has been used in high volume manufacturing (HVM) of logic and memory ICs for many years now, and Self-Aligned Quadruple Patterning (SAQP) has been used in HVM by at least one leading memory fab.

Fig.1: Basic tri-layer resist (TLR) technology uses thin Photoresist over silicon-containing Hard-Mask over Spin-On Carbon (SOC), for patterning critical layers of advanced ICs. (Source: Brewer Science)

Next-Generation Lithography (NGL) generally refers to any post-optical technology with at least some unique niche patterning capability of interest to IC fabs:  Extreme Ultra-Violet (EUV), Directed Self-Assembly (DSA), and Nano-Imprint Lithography (NIL). Though proponents of each NGL have dutifully shown capabilities for targeted mask layers for logic or memory, the capabilities of ArF dry and immersion (ArFi) scanners to process >250 wafers/hour with high uptime dominates the economics of HVM lithography.

The world’s leading lithographers gather each year in San Jose, California at SPIE’s Advanced Lithography conference to discuss how to extend optical lithography. So of all the NGL technologies, which will win out in the end?

It is looking most likely that the answer is “all of the above.” EUV and NIL could be used for single layers. For other unique patterning application, ArF/ArFi steppers will be used to create a basic grid/template which will be cut/trimmed using one of the available NGL. Each mask layer in an advanced fab will need application-specific patterning integration, and one of the rare commonalities between all integrated litho modules is the overwhelming need to improve pattern overlay performance.

Naga Chandrasekaran, Micron Corp. vice president of Process R&D, provided a fantastic overview of the patterning requirements for advanced memory chips in a presentation during Nikon’s LithoVision technical symposium held February 21st in San Jose, California prior to the start of SPIE-AL. While resolution improvements are always desired, in the mix-and-match era the greatest challenges involve pattern overlay issues. “In high volume manufacturing, every nanometer variation translates into yield loss, so what is the best overlay that we can deliver as a holistic solution not just considering stepper resolution?” asks Chandrasekaran. “We should talk about cost per nanometer overlay improvement.”

Extreme Ultra-Violet (EUV)

As touted by ASML at SPIE-AL, the brightness and stability and availability of tin-plasma EUV sources continues to improve to 200W in the lab “for one hour, with full dose control,” according to Michael Lercel, ASML’s director of strategic marketing. ASML’s new TWINSCAN NXE:3350B EUVL scanners are now being shipped with 125W power sources, and Intel and Samsung Electronics reported run their EUV power sources at 80W over extended periods.

During Nikon’s LithoVision event, Mark Phillips, Intel Fellow and Director of Lithography Technology Development for Logic, summarized recent progress of EUVL technology:  ~500 wafers-per-day is now standard, and ~1000 wafer-per-day can sometimes happen. However, since grids can be made with ArFi for 1/3 the cost of EUVL even assuming best productivity for the latter, ArFi multi-patterning will continue to be used for most layers. “Resolution is not the only challenge,” reminded Phillips. “Total edge-placement-error in patterning is the biggest challenge to device scaling, and this limit comes before the device physics limit.”

Directed Self-Assembly (DSA)

DSA seems most suited for patterning the periodic 2D arrays used in memory chips such as DRAMs. “Virtual fabrication using directed self-assembly for process optimization in a 14nm DRAM node” was the title of a presentation at SPIE-AL by researchers from Coventor, in which DSA compared favorably to SAQP.

Imec presented electrical results of DSA-formed vias, providing insight on DSA processing variations altering device results. In an exclusive interview with Solid State Technology and SemiMD, imec’s Advanced Patterning Department Director Greg McIntyre reminds us that DSA could save one mask in the patterning of vias which can all be combined into doublets/triplets, since two masks would otherwise be needed to use 193i to do LELE for such a via array. “There have been a lot of patterning tricks developed over the last few years to be able to reduce variability another few nanometers. So all sorts of self-alignments.”

While DSA can be used for shrinking vias that are not doubled/tripled, there are commercially proven spin-on shrink materials that cost much less to use as shown by Kaveri Jain and Scott Light from Micron in their SPIE-AL presentation, “Fundamental characterization of shrink techniques on negative-tone development based dense contact holes.” Chemical shrink processes primarily require control over times, temperatures, and ambients inside a litho track tool to be able repeatably shrink contact hole diameters by 15-25 nm.

Nano-Imprint Litho (NIL)

For advanced IC fab applications, the many different options for NIL technology have been narrowed to just one for IC HVM. The step-and-pattern technology that had been developed and trademarked as “Jet and Flash Imprint Lithography” or “J-FIL” by, has been commercialized for HVM by Canon NanoTechnologies, formerly known as Molecular Imprints. Canon shows improvements in the NIL mask-replication process, since each production mask will need to be replicated from a written master. To use NIL in HVM, mask image placement errors from replication will have to be reduced to ~1nm., while the currently available replication tool is reportedly capable of 2-3nm (3 sigma).

Figure 2 shows normalized costs modeled to produce 15nm half-pitch lines/spaces for different lithography technologies, assuming 125 wph for a single EUV stepper and 60 wph for a cluster of 4 NIL tools. Key to throughput is fast filling of the 26mmx33mm mold nano-cavities by the liquid resist, and proper jetting of resist drops over a thin adhesion layer enables filling times less than 1 second.

Fig.2: Relative estimated costs to pattern 15nm half-pitch lines/spaces for different lithography technologies, assuming 125 wph for a single EUV stepper and 60 wph for a cluster of 4 NIL tools. (Source: Canon)

Researchers from Toshiba and SK Hynix described evaluation results of a long-run defect test of NIL using the Canon FPA-1100 NZ2 pilot production tool, capable of 10 wafers per hour and 8nm overlay, in a presentation at SPIE-AL titled, “NIL defect performance toward high-volume mass production.” The team categorized defects that must be minimized into fundamentally different categories—template, non-filling, separation-related, and pattern collapse—and determined parallel paths to defect reduction to allow for using NIL in HVM of memory chips with <20nm half-pitch features.

—E.K.

What’s the Next-Gen Litho Tech? Maybe All of Them

Thursday, February 25th, 2016

By Jeff Dorsch, Contributing Editor

The annual SPIE Advanced Lithography symposium in San Jose, Calif., hasn’t offered a clear winner in the next-generation lithography race. It’s becoming clearer, however, that 193i immersion and extreme-ultraviolet lithography will co-exist in the future, while directed self-assembly, nanoimprint lithography, and maybe even electron-beam direct-write technology will fit into the picture, too.

At the same time, plasma deposition and etching processes are assuming a greater interdependence with 193i, especially when it comes to multiple patterning, such as self-aligned double patterning, self-aligned quadruple patterning, and self-aligned octuple patterning (yes, there is such a thing!).

“We’ve got to go down to the sub-nanometer level,” Richard Gottscho, Lam Research’s executive vice president of global products, said Monday morning in his plenary presentation at the conference. “We must reduce the variability in multiple patterning,” he added.

Gottscho touted the benefits of atomic level processing in continuing to shrink IC dimensions. Atomic level deposition has been in volume production for a decade or more, he noted, and atomic level etching is emerging as an increasingly useful technology.

When it comes to EUV, “it’s a matter of when, not if,” the Lam executive commented. “EUV will be complementary with 193i.”

Anthony Yen, director of nanopatterning technology in the Infrastructure Division of Taiwan Semiconductor Manufacturing, followed Gottscho in the plenary session. “The fat lady hasn’t sung yet, but she’s on the stage,” he said of EUV.

Harry Levinson, senior director of GlobalFoundries, gave the opening plenary presentation, with the topic of “Evolution in the Concentration of Activities in Lithography.” He was asked after his presentation, “When is the end?” Levinson replied, “We’re definitely not going to get sub-atomic.”

With that limit in mind, dozens of papers were presented this week on what may happen before the semiconductor industry hits the sub-atomic wall.

There were seven conferences within the symposium, on specific subjects, along with a day of classes, an interactive poster session, and a two-day exhibition.

The Alternative Lithographic Technologies conference was heavy on directed self-assembly and nanoimprint lithography papers, while also offering glimpses at patterning with tilted ion implantation and multiphoton laser ablation lithography.

“Patterning is the battleground,” said David Fried, Coventor’s chief technology officer, semiconductor, in an interview at the SPIE conference. He described directed self-assembly as “an enabler for optical lithography.”

Mattan Kamon of Coventor presented a paper on Wednesday afternoon on “Virtual fabrication using directed self-assembly for process optimization in a 14nm DRAM node.”

DSA could be used in conjunction with SAQP or LELELELE, according to Fried. While some lithography experts remain leery or skeptical about using DSA in high-volume manufacturing, the Coventor CTO is a proponent of the technology’s potential.

“Unit process models in DSA are not far-fetched,” he said. “I think they’re pretty close.  The challenges of EUV are well understood. DSA challenges are a little less clear. There’s no ‘one solution fits all’ with DSA.” Fried added, “There are places where DSA can still win.”

Franklin Kalk, executive vice president of technology for Toppan Photomasks, is open to the idea of DSA and imprint lithography joining EUV and immersion in the lithography mix. “It will be some combination,” he said in an interview, while adding, “It’s a dog’s breakfast of technologies. Don’t ever count anything out.”

Richard Wise, Lam’s technical managing director in the company’s Patterning, Global Products Groups CTO Office, said EUV, when ready, will likely be complementary with multipatterning for 7 nanometer.

Self-aligning quadruple patterning, for example, was once considered “insanity” in the industry, yet it is a proven production technology now, he said.

While EUV technology is “very focused on one company,” ASML Holding, there is a consensus at SPIE that EUV’s moment is at hand, Wise said. Intel’s endorsement of the technology and dedication to advancing it speaks volumes of EUV’s potential, he asserted.

“Lam’s always excelled in lot-to-lot control,” an area of significant concern, Wise said, especially with all of this week’s talk about process variability.

What will be the final verdict on the future of lithography technology? Stay tuned.

ASML Details Advances in DUV, Metrology, EUV

Thursday, February 25th, 2016

thumbnail

By Jeff Dorsch, Contributing Editor

ASML Holding is glad to talk about its continuing progress in extreme-ultraviolet lithography technology. But first, the company has some information about its deep-ultraviolet scanners, as well.

ASML continues to ship its TWINSCAN NXT: 1980Di immersion lithography systems, which are capable of processing 275 wafers per hour, according to Michael Lercel, ASML’s director of strategic marketing.

Since shipments began last year, the 1980Di is exhibiting overlay numbers that are “slightly better than expected,” Lercel said Wednesday at the SPIE Advanced Lithography conference in San Jose, Calif. ASML aimed to make the 193i litho system “ a little bit more robust” than its predecessor, the TWINSCAN NXT: 1970Ci, he added. The 1970Ci can be upgraded in the field to the 1980Di’s capabilities, according to the company.

The 1980Di can be utilized in a combination of lithography techniques, including single exposure, lithography-etch-lithography-etch, sidewall spacers, and self-aligned double patterning, Lercel said. It offers the kind of variability control needed for self-aligned quadruple patterning, he added.

The ASML executive also addressed the company’s new YieldStar 350E metrology system, which he said can “correct for overlay errors” and “apply corrections to upstream and downstream problems,” using “a lot of overlay data.”

On the EUV front, Lercel said ASML has made “a lot of progress in the last 12 to 18 months.” At its facilities in Veldhoven, the Netherlands, the company has been able to operate a power source for its EUV systems at 200 watts “for one hour, with full dose control,” he noted.

That’s approaching its high-volume manufacturing target of 250W, according to Lercel. ASML continues to predict its EUV scanners will move into volume production applications in the 2018-19 timeframe, he said.

Intel and Samsung Electronics this week reported running their EUV power sources at 80W over extended periods.

The new TWINSCAN NXE:3350B scanners are now being shipped with 125W power sources, Lercel noted. ASML has demonstrated 80 percent availability in the field, including scheduled downturns, bringing EUV close to matching immersion lithography, Lercel said. Regarding availability, “we need to do better in consistency,” he acknowledged.

ASML has “multiple EUV systems at multiple customers,” Lercel said. In addition to Intel and Samsung, the company’s EUV scanners are also being used at GlobalFoundries, SK Hynix, and Taiwan Semiconductor Manufacturing, among others not yet identified by the equipment vendor.

ASML this week reported reaching a deal with Nippon Control System on integrating optical proximity correction to mask data preparation on a common platform.

Laser Suppliers Move Past the Neon Gas Crisis

Wednesday, February 24th, 2016

By Jeff Dorsch, Contributing Editor

That neon gas shortage? So 2015.

The supply issue continues, as armed conflict heats up in eastern Ukraine, site of a plant that supplies a majority of the neon gas used in the world. Cymer and Gigaphoton, the big suppliers of excimer lasers for lithography that use neon as a buffer gas, have worked around the shortage, including the recycling of gas exhaust from their lasers.

“Prices have somewhat stabilized,” said Joe Ganeshan, sales manager for Gigaphoton USA. “We’re still in a crisis.”

Pricing for neon gas last year rose by 10 to 20 times, according to Ted Cacouris, product marketing director at the Cymer subsidiary of ASML Holding. One gas supplier in Ukraine was behind more than half of the world’s supply, and transporting the gas out of the conflict zone became haphazard, he noted.

The spike in neon gas prices peaked in 2015’s late summer and early fall, Cacouris said. As semiconductor manufacturers adjusted to the shortage, “prices started rolling over,” he added.

Cymer and Gigaphoton both implemented recycling programs in response to the supply situation, dramatically reducing neon gas consumption for their customers. Ganeshan estimated his company’s customers saved around $90 million a year as a result, while Cacouris put the figure at about $200 million.

In addition to reducing neon-gas consumption, Gigaphoton is moving to eliminate the use of helium in chipmaking, citing the U.S. government’s plans to cut off supply of the unrenewable gas in the near future. Used as a purging gas in argon fluoride 193i immersion lithography scanners, helium will be replaced with nitrogen, Ganeshan said.

Putting the neon-gas crisis in the rearview mirror, Cymer and Gigaphoton are turning to other pressing issues as suppliers of the light sources used in immersion and extreme-ultraviolet lithography systems.

Gigaphoton claimed to have improved its market share in excimer lasers for semiconductor manufacturing to 60 percent or more in 2015.

Cymer’s Cacouris cast doubt on that figure, without disclosing his company’s market share last year. Japan-based Gigaphoton greatly benefited from the exchange rate on the yen, gaining a 20 percent pricing advantage as a result, he asserted.

He described Gigaphoton’s claim as “a bit optimistic,” adding, “They’ve had some progress; they’ve had a few wins.” Cacouris vowed, “We’re going to do a lot better this year.”

Before the SPIE Advanced Lithography conference in San Jose, Calif., Gigaphoton announced that it is establishing new support bases in Dalian and Xiamen, China. The company also said it has received supplier awards from United Microelectronics and Taiwan Semiconductor Manufacturing.

Canon, Toshiba Join eBeam Initiative Group

Wednesday, February 24th, 2016

By Jeff Dorsch, Contributing Editor

The eBeam Initiative announced that Canon and Toshiba are new members of the industry organization, which seeks to promote the use of electron-beam technology in semiconductor manufacturing and design.

Canon Nanotechnologies and Toshiba are closely collaborating on the development of nanoimprint lithography technology. Both companies presented papers on Tuesday morning at the SPIE Advanced Lithography conference in the session devoted to “Nanoimprint Lithography Production Readiness.”

The eBeam Initiative additionally announced that it will expand its education efforts in 2016 to support the development of extreme-ultraviolet lithography, multi-beam mask writing, and nanoimprint lithography, all of which employ e-beam techniques in producing photomasks, or master templates in the case of NIL.

“People believe multi-beam is going to happen,” said Aki Fujimura, chief executive officer of D2S, the managing company sponsor of the e-beam group. He cited the group’s annual survey of industry figures, who last year predicted multi-beam mask-writing tools would be used in high-volume manufacturing for critical-layer photomasks by the end of 2018. This industry acknowledgement of advances in multi-beam mask writing “gives confidence,” Fujimura said at the eBeam Initiative’s annual luncheon at the SPIE Advanced Lithography symposium.

More than 100 luncheon attendees heard presentations by representatives of Dai Nippon Printing, the photomask manufacturer; imec, the research and development organization based in Belgium; and NuFlare Technology, a supplier of e-beam mask writers, mask inspection systems, and epitaxial reactors.

Naoya Hayoshi of DNP reported on the basics of NIL, which he said faces “some challenges, as in mask making.”

Praveen Raghavan of imec spoke about the organization’s development of test chips with 5-nanometer features. One was made with self-aligned quadruple patterning, using a 193i immersion scanner, while the other was fabricated with an EUV scanner.

The EUV technology offers “significant wafer cost benefit and enables 2D BEOL,” Raghavan said.

NuFlare’s Hiroshi Matsumoto spoke about the company’s forthcoming MBM-1000 multi-beam mask-writing system, an alpha version of which is currently in operation at the NuFlare facilities in Yokohama, Japan. NuFlare plans to offer a HVM version of the MBM-1000 by the end of this year, he said, with delivery in the fourth quarter of 2017.

The MBM-1000 is targeted at production of 5nm chips, while its successor, the MBM-2000, will address fabrication of 3nm ICs, according to Matsumoto. The MBM-2000 will be released in 2019, he said.

Optimism Reigns at SPIE Lithography Conference, Despite Challenges

Tuesday, February 23rd, 2016

thumbnail

By Jeff Dorsch, Contributing Editor

Semiconductor manufacturing and design is growing increasingly complicated and just plain hard. Everyone knows that. The bad news is it’s only going to get worse.

Relax, there are many smart people gathered in San Jose, Calif., this week for the SPIE Advanced Lithography Symposium to discuss the challenges and figure out how to surmount them.

The changes required in lithography and related technologies to continue IC scaling promise to be painful and costly. Mitigating the pain and the cost is a common theme at the SPIE conference.

The annual SPIE Advanced Lithography conference is often dominated by discussions on the state of extreme-ultraviolet lithography (EUVL). In presentations on Sunday and Monday, the theme was generally the same as 2015 – EUV is making progress, yet it’s still not ready for high-volume semiconductor manufacturing.

Intel Fellow Mark Phillips said the technology has seen “two years of solid progress,” speaking Sunday at Nikon’s LithoVision 2016 event. He added, “There’s no change in Intel’s position: We’ll use EUV only when it’s ready.”

Anthony Yen of Taiwan Semiconductor Manufacturing covered the 30-year history of EUV development in his Monday morning presentation at the SPIE conference. Asked during the question-and-answer session following the presentation on when the world’s largest silicon foundry will use EUV, Yen stuck to the official company line of implementing EUV in production for the 7-nanometer process node, after some involvement at 10nm.

Seong-Sam Kim of Samsung Electronics also sees EUV realizing its long-aborning potential at 7nm, a node at which “argon fluoride multipatterning will hit the wall.” He touted the 80-watt power source Samsung has achieved with its NXE-3300 scanner from ASML Holding, saying it had maintained that level over more than eight months.

Intel’s Britt Turkot reported 200W source power “has been achieved recently,” and said the tin droplet generator in its ASML scanner has been significantly improved, increasing its typical lifetime by three times. EUV has demonstrated “solid progress,” she said, including ASML’s development of a membrane pellicle for EUV reticles.

While work with the ASML scanner on Intel’s 14nm pilot fab line has been “encouraging,” Turkot said, she added, “We do need to keep the momentum going.” Intel sees EUV entering into volume production with 7nm chips, according to Turkot. “It will be used when it’s ready,” she said.

EUV technology has shown “good progress” in productivity, while its availability and cost considerations have “a long way to go,” Turkot concluded, adding, “We need an actinic solution for the long term.”

An industry consensus has emerged that EUV will be used with ArF 193i immersion lithography in the near future, and this trend is likely to continue for some time, according to executives at the SPIE conference. There may also be wider adoption of directed self-assembly (DSA) and nanoimprint lithography technology, among other alternative lithography technologies.

Mark Phillips of Intel pointed to complementary implementation of EUV and 193i. “We must use EUV carefully,” he said. “We need to replace three-plus 193i masks.” Phillips added, “EUV can’t be applied everywhere affordably. 193i will continue to be used whenever possible.”

Nikon executives touted the capabilities of their new NSR-S631E ArF immersion scanner, introduced just before the SPIE conference. The new scanner can turn out 250 wafers per hour, and can be pushed to 270 wph with certain options, according to Nikon’s Ryoichi Kawaguchi.

Yuichi Shibazaki of Nikon said the company will next year introduce the S63xE scanner, improving on S631E.

For all the challenges of transitioning to 7nm and beyond, executives at SPIE remain optimistic about solving the issues of 193i multipatterning, DSA, and EUV. Harry Levinson of GlobalFoundries said in response to a question, “The ultimate resource is the human mind.”

What to See at the SPIE Advanced Lithography Show

Monday, February 22nd, 2016

thumbnail

By Gandharv Bhatara, Calibre Semi-Manufacturing Marketing Manager

The SPIE Advanced Lithography conference, from Tuesday, February 23, to Thursday, February 25, offers an incredible amount of technical information in a few long, fun days.  This year, Mentor Graphics has a large presence at SPIE Advanced Lithography to demonstrate our technical dominance in three computational lithography solutions – multipatterning with immersion lithography, EUV, and directed self-assembly. These are the three viable candidates at the advanced technology nodes (< 10nm), and Mentor continues to invest and develop them.

Mentor is engaged in deep partnerships will several leading-edge foundries and presents a multitude of papers that are written jointly with leading-edge foundries:

  • Samsung — “A random approach of test macro generation for early detection of hotspots”
  • GLOBALFOUNDRIES
    • “Directed self-assembly (DSA) compliant correction flow with immersion lithography”
    • “Source mask optimization using 3D mask and compact resist models”
    • “Multi-layer VEB model: capturing interlayer etch process effects for self-aligned via in multipatterning process scheme”
    • “EUV implementation of model-based assist features in contact patterns”
    • SMIC
      • “A novel full chip process window OPC based on matrix retargeting”
      • “Design space exploration for early identification of yield limiting patterns”
      • SK Hynix — “Advanced DFM application for automated bit-line pattern dummy

Mentor also partners with leading academia, universities, research institutes and experts in the area of lithography and has papers co-written with:

  • IBM Thomas J. Watson Research Center — “Ultimate 2D resolution printing with negative-tone development”
  • Chris Mack — “Modeling metrology for calibration of OPC models”
  • Rochester Institute of Technology — “An automated image-based tool for pupil plane characterization of EUVL tools”
  • China’s Institute of Microelectronics — “Design technology co-optimization for 14/10nm metal1 double patterning layer”

What should become clear from the SPIE conference lineup, is that Advanced Lithography now extends well past mask synthesis and RET/OPC and into DFM, design enablement, and design-technology co-optimization (“Patterns-based DTCO flow for early estimation of lithographic difficulty using optical image processing techniques”).

Mentor is well positioned as a technology leader in all these areas. Designs today demand integrated solutions, not just point tools. That’s why we have developed an entire post-tapeout flow built on the Calibre platform. This core competency is what allows our manufacturing partners to assemble the fastest and the most accurate design-to-mask solutions (“An Integrated design-to-manufacturing flow for SADP”).

So if you are involved in design for manufacturing or post-tapeout engineering, come out to SPIE to see these papers and many more, from February 22-25 at the San Jose Convention Center. Mentor genius will be in available in presentations and at booth #225 to chat about any lithography-related issue on your mind.

Figure 1. Etch contour with multi-layer VEB model.

Familiar Phrase Returns to the Fray at EV Group Conference

Thursday, February 18th, 2016

thumbnail

By Jeff Dorsch, Contributing Editor

At the EV Group Technology Day conference on Wednesday in Fremont, Calif., a familiar phrase that hasn’t been often heard in recent years was used: Step-and-repeat.

Step-and-repeat systems, also known as wafer steppers, were the workhorse lithography systems for many years in the semiconductor industry, and they still are employed for very mature fabrication processes.

Ultratech was once known as Ultratech Stepper, dropping the “Stepper” from its name in 2003. The company is still involved in packaging lithography systems, competing with EVG and other vendors.

Garrett Oakes, EV Group’s director of technology for North America, described step-and-repeat operations with a master stamp in ultraviolet imprint lithography, with the master stamp creating working stamps to be used in making lens wafers for wafer-level camera modules.

The EVG770 Automated NIL Stepper is offered by the Austrian company for large-area step-and-repeat UV imprint lithography.

The Technology Day conference heard from several EVG executives over the course of the day. Christine Thanner, EVG’s senior process engineer for nanoimprint lithography (NIL), provided a primer on NIL technology, which is divided into hot embossing, UV-NIL, and micro-contact printing soft lithography.

The conference also heard from S. J. Ben Yoo, a professor in the University of California, Davis’ College of Engineering, and from Carolyn D. White, an expert in microelectromechanical system device design, analysis, and fabrication at A. M. Fitzgerald & Associates.

EV Group announced Wednesday that its EVG HERCULES lithography track system has been installed at WIKA Group’s fabrication headquarters in Klingenberg, Germany, where it is being used in making pressure sensor devices.

This was the second annual EVG Technology Day conference. The first was held last year in Dallas. Privately held EV Group was established in 1980 and has more than 800 employees around the world, with 2,200-plus tools installed globally.

Next Page »