Part of the  

Solid State Technology

  and   

The Confab

  Network

About  |  Contact

Posts Tagged ‘EUV’

Next Page »

5nm Node Needs EUV for Economics

Thursday, January 29th, 2015

thumbnail

By Ed Korczynski, Sr. Technical Editor

#mce_temp_url#

At IEDM 2014 last month in San Francisco, Applied Materials sponsored an evening panel discussion on the theme of “How do we continue past 7nm?” Given that leading fabs are now ramping 14nm node processes, and exploring manufacturing options for the 10nm node, “past 7nm” means 5nm node processing. There are many device options possible, but cost-effective manufacturing at this scale will require Extreme Ultra-Violet (EUV) lithography to avoid the costs of quadruple-patterning.

Fig. 1: Panelists discuss future IC manufacturing and design possibilities in San Francisco on December 16, 2014. (Source: Pete Singer)

Figure 1 shows the panel being moderated by Professor Mark Rodwell of the University of California Santa Barbara, composed of the following industry experts:

  • Karim Arabi, Ph.D. – vice president, engineering, Qualcomm,
  • Michael Guillorn, Ph.D. – research staff member, IBM,
  • Witek Maszara, Ph.D. – distinguished member of technical staff, GLOBALFOUNDRIES,
  • Aaron Thean, Ph.D. – vice president, logic process technologies, imec, and
  • Satheesh Kuppurao, Ph.D. – vice president, front end products group, Applied Materials.

Arabi said that from the design perspective the overarching concern is to keep “innovating at the edge” of instantaneous and mobile processing. At the transistor level, the 10nm node process will be similar to that at the 14nm node, though perhaps with alternate channels. The 7nm node will be an inflection point with more innovation needed such as gate-all-around (GAA) nanowires in a horizontal array. By the 5nm node there’s no way to avoid tunnel FETs and III-V channels and possibly vertical nanowires, though self-heating issues could become very challenging. There’s no shortage of good ideas in the front end and lots of optimism that we’ll be able to make the transistors somehow, but the situation in the backend of on-chip metal interconnect is looking like it could become a bottleneck.

Guillorn extolled the virtues of embedded-memory to accelerate logic functions, as a great example of co-optimization at the chip level providing a real boost in performance at the system level. The infection at 7nm and beyond could lead to GAA Carbon Nano-Tube (CNT) as the minimum functional device. It’s limited to think about future devices only in terms of dimensional shrinks, since much of the performance improvement will come from new materials and new device and technology integration. In addition to concerns with interconnects, maintaining acceptable resistance in transistor contacts will be very difficult with reduced contact areas.

Maszara provided target numbers for a 5nm node technology to provide a 50% area shrink over 7nm:  gate pitch of 30nm, and interconnect level Metal 1 (M1) pitch of 20nm. To reach those targets, GLOBALFOUNDRIES’ cost models show that EUV with ~0.5 N.A. would be needed. Even if much of the lithography could use some manner of Directed Self-Assembly (DSA), EUV would still be needed for cut-masks and contacts. In terms of device performance, either finFET or nanowires could provide desired off current but the challenge then becomes how to get the on current for intended mobile applications? Alternative channels with high mobility materials could work but it remains to be seen how they will be integrated. A rough calculation of cost is the number of mask layers, and for 5nm node processing the cost/transistor could still go down if the industry has ideal EUV. Otherwise, the only affordable way to go may be stay at 7nm node specs but do transistor stacking.

Thein detailed why electrostatic scaling is a key factor. Parasitics will be extraordinary for any 5nm node devices due to the intrinsically higher number of surfaces and junctions within the same volume. Just the parasitic capacitances at 7nm are modeled as being 75% of the total capacitance of the chip. The device trend from planar to finFET to nanowires means proportionally increasing relative surface areas, which results in inherently greater sensitivity to surface-defects and interface-traps. Scaling to smaller structures may not help you if you loose most of the current and voltage in non-useful traps and defects, and that has already been seen in comparisons of III-V finFETs and nanowires. Also, 2D scaling of CMOS gates is not sustainable, and so one motivation for considering vertical transistors for logic at 5nm would be to allow for 20nm gates at 30nm pitch.

Kappurao reminded attendees that while there is still uncertainty regarding the device structures beyond 7nm, there is certainty in 4 trends for equipment processes the industry will need:

  1. everything is an interface requiring precision materials engineering,
  2. film depositions are either atomic-layer or selective films or even lattice-matched,
  3. pattern definition using dry selective-removal and directed self-assembly, and
  4. architecture in 3D means high aspect-ratio processing and non-equilibrium processing.

An example of non-equilibrium processing is single-wafer rapid-thermal-annealers (RTA) that today run for nanoseconds—providing the same or even better performance than equilibrium. Figure 2 shows that a cobalt-liner for copper lines along with a selective-cobalt cap provides a 10x improvement in electromigration compared to the previous process-of-record, which is an example of precision materials engineering solving scaling performance issues.

Fig. 2: ElectroMigration (EM) lifetimes for on-chip interconnects made with either conventional Cu or Cu lined and capped with Co, showing 10 times improvement with the latter. (Source: Applied Materials)

“We have to figure out how to control these materials,” reminded Kappurao. “At 5nm we’re talking about atomic precision, and we have to invent technologies that can control these things reliably in a manufacturable manner.” Whether it’s channel or contact or gate or interconnect, all the materials are going to change as we keep adding more functionality at smaller device sizes.

There is tremendous momentum in the industry behind density scaling, but when economic limits of 2D scaling are reached then designers will have to start working on 3D monolithic. It is likely that the industry will need even more integration of design and manufacturing, because it will be very challenging to keep the cost-per-function decreasing. After CMOS there are still many options for new devices to arrive in the form of spintronics or tunnel-FETs or quantum-dots.

However, Arabi reminded attendees as to why the industry has stayed with CMOS digital synchronous technology leading to design tools and a manufacturing roadmap in an ecosystem. “The industry hit a jackpot with CMOS digital. Let’s face it, we have not even been able to do asynchronous logic…even though people tried it for many years. My prediction is we’ll go as far as we can until we hit atomic limits.”

Changes and Challenges Abound in Multi-patterning Lithography

Monday, January 26th, 2015

thumbnail

By Jeff Dorsch

Multi-patterning lithography is a fact of life for many chipmakers. Experts in the fields of electronic design automation and lithography address the issues associated with the technology. Providing responses are David Abercrombie, Design for Manufacturing Program Manager, Mentor Graphics; Gary Zhang, Vice President Marketing, ASML Brion; and Dr. Donis Flagello of Nikon Research Corporation of America.

1. What are the significant considerations in semiconductor manufacturing and design with multi-patterning lithography?

David Abercrombie: Like most process/design trade-offs moving from one node to another it comes down to cost vs area and performance. Without multi-patterning or EUV you will struggle do design at 20nm or below limiting the opportunity to take advantage of design area and performance scaling. Essentially, Moore’s Law slows to a crawl without it. Multi-patterning affects almost all aspects of design and manufacturing. For physical design it adds additional design rule constraints and constrains cell placement and routing depending on cell architecture. For electrical design it adds additional parasitic variability to consider in timing analysis. For DFM it adds additional requirements for fill and lithographic checking. In manufacturing it adds additional masks, process steps and increases stepper utilization. All of these increase complexity and have an associated cost. It ultimately has to make business sense. Because of this you are seeing fewer companies moving to these advanced nodes as quickly as before, as they must have the volume and profit margins to justify the increased cost. Fortunately, there are products that do need the newest and most advanced process nodes, and because of those needs we continue to move forward into these new technology nodes on a regular schedule.

Gary Zhang: Multiple patterning (MPT) using immersion lithography is required for the semiconductor industry to continue device scaling until extreme ultraviolet (EUV) comes into full production (EUV is expected for a mid-node insertion in the 10nm logic node, and for 7nm node development and production in the 2015-2017 time frame). Multiple-patterning lithography brings the following new challenges from design to manufacturing. ASML has been collaborating with the chipmakers in a holistic lithography framework to tackle these challenges with innovative hardware and software solutions, including scanner systems, computational lithography, metrology and process control.

Integrated circuit designs have to be multiple patterning compatible. Industry has been developing methods to enable MPT-compatible designs via layout decomposition (coloring) and conflict resolution using multiple patterning rules as constraints. This applies to standard-cell libraries, cell boundaries, and placement and route to ensure full chip layouts meet all manufacturing requirements and can be decomposed into separate masks without any post-coloring MPT conflicts. Structured layouts with highly restricted design rules seem to be a key enabler for MPT-compliant designs.

The rule-based approach to MPT compatible designs tends to run the risk of pattern defects from design hot spots, especially when design rules are pushed aggressively for competitive die size. The lithography process window of these design hot spots can be enlarged using source-mask optimization (SMO). Brion’s Tachyon SMO has been routinely used to co-optimize scanner optics such as illumination source and projection lens wavefront and mask enhancements including sub-resolution assist features (SRAF) and optical proximity correction (OPC) for any given designs. Take triple patterning of a 10nm node metal layer as an example. Tachyon SMO enables a 23% larger process window for the selected SRAM and logic designs (Figure 1). By evaluating a range of design variations, SMO can help optimize design rules and MPT coloring rules to eliminate design hot spots in the technology development stage. For production mask data preparation, Brion’s multiple patterning OPC and LMC (Lithography Manufacturability Check) are widely used by the leading chipmakers to deliver the best full chip process window in wafer manufacturing. A combination of SMO, OPC and LMC makes up ASML’s process window enhancement solutions to the design hot spot problem.

Figure 1. Source-mask optimization (SMO) of a 10 nm node metal layer in triple patterning lithography. Overlapping process window of all three splits (masks) is improved by 23% for selected SRAM and logic patterns imaged with the same illumination setup.

Multiple patterning drives tighter CD, focus and overlay requirements to account for more process variations from the additional processing steps. Overlay is used here as an example to show the increasing complexity in multiple patterning process control from single exposure at 28nm node, to double patterning at 14nm node, to triple patterning at 10nm node (Figure 2). Tighter overlay specification has to be met for the exponentially increasing number of critical masks and metrology steps at 14nm and 10nm nodes. To deliver the required overlay control on product wafers, scanner matching and process control have to include high order corrections (Figure 3). ASML’s latest generation of immersion scanners have a large number of flexible actuators and are capable of sub-3 nm matched-machine overlay, dynamic lens heating and reticle heating corrections, and high-order interfield and intrafield corrections for imaging, focus and overlay.

Figure 2. A comparison of overlay metrology and control for single exposure at 28 nm node, double patterning at 14 nm node and triple patterning at 10 nm node, using the Metal 1 (M1) to Metal 2 (<2) process loop as an example.

Figure 3. On-product overlay roadmap showing the ever tighter specification from 28 nm node to 14 and 10 nm nodes and the requirement of advanced scanner correction capabilities (such as dynamic and high-order).Two different production scenarios are considered, namely scanner/chuck dedication and mix and match of different scanners.

With the introduction of multiple patterning below 28 nm node, the increasing number of masks and metrology steps translates to lower wafer throughput per scanner and longer wafer cycle time from start to finish. This then leads to cost per wafer significantly higher than the historical cost scaling trend from the previous technology nodes. ASML has been continuously driving the scanner innovation to increase the throughput and improve productivity in terms of wafer output per day. ASML’s YieldStar integrated metrology is another innovative solution to reduce wafer cycle time and improve on-product performance for effective productivity gain and overall cost benefit.

In summary, a full suite of design and manufacturing solutions are required to address the new challenges in multiple-patterning lithography. ASML has taken a holistic approach and worked in close collaboration with the chipmakers to optimize design, scanner, mask and process control altogether for the best manufacturability and yield. Figure 4 gives an example on how holistic lithography enables focus roadmap down to 1x nm node. In the design phase, process window enhancement solutions such as SMO, OPC and LMC are used to eliminate the design hot spots and maximize the full chip process window. In the wafer manufacturing phase, process window control solutions such as scanner matching and high order corrections are implemented to optimize CD, overlay and focus control dynamically from tool to tool, field to field, wafer to wafer and lot to lot. A combination of the largest process window and the tightest process control delivers the most robust manufacturability and yield in volume production.

Figure 4. An example of how holistic lithography enables focus roadmap down to 1x nm node (DPT: double patterning; MPT: multiple patterning). A combination of process window enhancement and process window control solutions delivers robust manufacturability and yield in volume production.

Donis Flagello: Multiple patterning brings a host of issues due to the added complexity associated with imaging and processing multiple patterns within the same design layer. From the exposure tool point of view, we need to ensure that the overall cost of ownership is maintained and the tool can enable further scaling. We are concentrating on many aspects of the technology. One of the most critical is overlay. This must be as low as possible such that the ensemble overlay of all the exposures within a layer is equal or better than a single exposure. Simultaneously, we need to increase the throughput of the tools to ensure that cost per wafer per hour is also continuously improved.  Both of these aspects drive a huge amount of innovation and technology development.

2. How do you deal with color assignment?

Abercrombie: The answer to that depends on the foundry and layer being discussed. Colorless, partial coloring and full coloring flows exist. In colorless flows the designer does not assign colors. There are specialized checks (like odd cycle checks in double patterning) that make sure the layout can be decomposed into multiple masks later once the design is taped-out to the foundry. In a partial coloring flow most of the layout follows the colorless flow, but the designer can manually assigns some parts of the layout to a particular color to manage subtle variation concerns. For instance, making sure matched circuitry also has matched coloring. In a fully colored flow the designer is responsible for producing the final mask assignments for all polygons in the layer. A GDS layer is dedicated to each mask. To assign a polygon to a given mask a copy of it is placed on the appropriate mask color layer. EDA companies provide various automation capabilities to assist with color assignment in custom, P&R and batch full chip applications.

It is best to use an EDA solution like Calibre that not only can address all different coloring flows but also provides the same checks/algorithms for all phases a design goes through from initial IP blocks to final full chip signoff.

Zhang: Layout decomposition or coloring has to deliver split patterns on separate masks which are free of any process rule violations and can then be patterned in single exposure with sufficient process window. A double patterning (DPT) using a litho-etch-litho-etch process is shown as an example (Figure 5). In the DPT coloring step, any non-native color conflicts are resolved in a layer aware implementation with stitches that are properly located away from the overlap region between layers (such as a metal line contacting a via) and have the least impact on the device performance and manufacturing yield. Process robust stitching must have sufficient overlap margin to tolerate misalignment between the exposures of the split masks. This is the concept of overlay aware stitching.

Figure 5. An example of design to manufacturing work flow for a litho-etch-litho-etch double patterning (DPT) process, from layer aware coloring to overlay aware stitching, to model based OPC, to the final contour after litho and etch processes.

Color balancing is another critical care-about in layout decomposition. MPT coloring not only needs to deliver split layouts free of MPT conflicts but also has to ensure the pattern density is balanced between the split masks. Color balancing is beneficial for litho and etch process control so that robust and uniform patterning qualities can be achieved.

Coloring can also be optimized for best process window using a model based approach, as described above in the “Design hot spots” section. Model-based coloring is not suitable for full chip application. It can be either used in source-mask optimization for MPT rule development or applied in local hot spot fix during the mask data preparation.

3. How does design rule check change? How is it the same?

Abercrombie: In a fully colored flow the design rules change slightly. First for every traditional spacing check there are essentially two checks for double patterning (DP): a minimum spacing for different colored polygons, and a larger minimum spacing for same colored polygons. In addition, there are usually additional density checks making sure the ratio between the colors is reasonably equal. In colorless flows specialized new checks have been developed to verify if a valid coloring exists for a given layout construct. In double patterning these specialized checks include odd cycle checks. For triple patterning (TP) and quadruple patterning (QP) new types of checks are required.

Zhang: Triple patterning (TPT) coloring is a lot more difficult and complex than DPT coloring. It is extremely hard to determine if a layout is TPT compatible, known as NP-complete problem in graph theory. There is no efficient way to find a solution on the full chip level. There are no existing methods for determining the number of conflicts and their locations.

Stitches are color-dependent in TPT and candidate stitch locations can be determined only after or during coloring.

Therefore it is important to ensure TPT compliance by design construct.

4. What are the complexities and issues in transitioning from double-patterning to triple-patterning?

Abercrombie: Although checking and decomposing a layout for two colors is complex, the algorithmic processing scales reasonably by design size. However, the generalized solution for triple and quadruple patterning has exponentially increasing run time as the number of polygons processed increases. This is, of course, is not a practical solution. So the problem must be constrained such that reasonable heuristic algorithmic approaches can be applied that provide reasonably scalable run times. So the complete set of design rules and design methodology need to be properly tuned to constrain the graph-complexity of the layouts produced so these checking and decomposition heuristic tools can be utilized. In addition, specialized checks may be needed so that layout constructs that do not meet the complexity constraints can be diverted from processing (to keep run time from exploding) and flagged to the user for modification until they can be properly processed.

The other challenge in moving from DP to TP and QP is colorless error visualization. If you are doing a colorless flow and need to check if the design can legally be colored, you need a way to highlight constructs for which no valid coloring solution exists in a way that the designer can understand so he/she can make changes in the layout to fix it. For DP this was odd cycle error visualization. An even-numbered cycle of interacting polygons can be colored and an odd numbered cycle of interacting polygons cannot. For TP and QP this is not the case. Any simple even or odd cycle can be colored. The constructs which cannot be colored are much more complex than in DP. In addition, narrowing down the implicated constructs to the “root” of the problem is more difficult. To address these issues Mentor Calibre is developing a new array of error visualization layers to help inform and guide the user to appropriate and productive fixes.

Flagello: Years ago many industry observers did not believe that double patterning was viable. Today double and triple patterning is being done. However, there are some key differences between the two. Depending on the technology used, double exposure from a tool perspective is more or less straightforward. Mask alignment is usually based on the previous layer mark. However, moving to triple exposure often results in much more of an optimization problem to determine the best alignment strategy. Sometimes, the previous layer alignment mark may have a poor signal depending on the number of films involved in the multiple-patterning schemes. While increasing the number of patterning steps increases some of the complexity, the solutions become more of an optimization and controls challenge.

5. What issues in IC design and verification emerge with multi-patterning?

Abercrombie: The designer should expect to see new design rules, more parasitic variation, more complexity in design and methodology constraints, increased wafer cost, and the need for new EDA tools and additional CPU hardware to process their designs. This is really not new as this increased complexity and cost has existed between every node transition. The difference is that the delta may be more than between previous nodes. It is important that design teams educate themselves early on the impacts of moving to multi-patterned process nodes. That includes getting information from the foundry and EDA partners as well as reading available material on the subject. I have a whole series of articles covering much of the questions in this round table in significant detail: http://www.mentor.com/solutions/foundry/solutions/multi-patterning

Zhang: In addition to the power, performance and area metrics, designers now have to ensure their IC designs are MPT compliant and free of design hot spots so that they can be manufactured cost effectively with the best yield using multiple-patterning lithography. From lithography point of view, design hot spots are the major yield detractor. Device performance such as RC timing delay, cross talk, leakage (such as IDDQ), breakdown voltage and final yield is heavily influenced by MPT process variations. Brion’s LMC has been used to evaluate the impact of realistic dose, focus, mask and overlay variations on MPT hot spots both intra-layer and interlayer. Identification of such MPT hot spots helps drive design and OPC improvements so that they can be eliminated in wafer manufacturing.

Blog review December 16, 2014

Tuesday, December 16th, 2014

Maybe, just maybe, ASML Holding N.V. (ASML) has made the near-impossible a reality by creating a cost-effective Extreme Ultra-Violet (EUV @ ~13.5nm wavelength) all-reflective lithographic tool. The company has announced that Taiwan Semiconductor Manufacturing Company Ltd. (TSMC) has ordered two NXE:3350B EUV systems for delivery in 2015 with the intention to use those systems in production. In addition, two NXE:3300B systems already delivered to TSMC will be upgraded to NXE:3350B performance. While costs and throughputs are conspicuously not-mentioned, this is still an important step for the industry.

The good and the great of the electron device world will make their usual pilgrimage to San Francisco for the 2014 IEEE International Electron Devices Meeting. Dick James of Chipworks writes that it’s the conference where companies strut their technology, and post some of the research that may make it into real product in the next few years.

The 4th Annual Global Interposer Technology Workshop at GaTech gathered 200 attendees from 11 countries to discuss the status of interposer technology. It has become the one meeting where you can find all the key interposer layers including those representing glass, laminate and silicon, blogs Phil Garrou.

Sharon C. Glotzer and Nicholas A. Kotov are both researchers at the University of Michigan who were just awarded a MRS Medal at the Materials Research Society (MRS) Fall Meeting in San Francisco for their work on “Integration of Computation and Experiment for Discovery and Design of Nanoparticle Self-Assembly.”

In order to keep pace with Moore’s Law, semiconductor market leaders have had to adopt increasingly challenging technology roadmaps, which are leading to new demands on electronic materials (EM) product quality for leading-edge chip manufacturing. Dr. Atul Athalye, Head of Technology, Linde Electronics, discusses the challenges.

ST further accelerates its FD-SOI ROs* by 2ps/stage, and reduces SRAM’s VMIN by an extra 70mV. IBM shows an apple-to-apple comparison of 10nm FinFETs on Bulk and SOI. AIST improves the energy efficiency of its FPGA by more than 10X and Nikon shows 2 wafers can be bonded with an overlay accuracy better than 250nm. Adele Hars reports.

Does your design’s interconnect have high enough wire width to withstand ESD? Frank Feng of Mentor Graphics writes in his blog that although applying DRC to check for ESD protection has been in use for a while, designers still struggle to perform this check, because a pure DRC approach can’t identify the direction of an electrical current flow, which means the check can’t directly differentiate the width or length of a wire polygon against a current flow.

At the recent IMAPS conference, Samsung electro-mechanics compared their Plated Mold Via Technology (PMV) to the well known Amkor Through Mold Via  (TMV) technology. The two process flows are compared. Phil Garrou reports.

Solid State Watch: November 25-December 4, 2014

Monday, December 8th, 2014
YouTube Preview Image

The Week in Review: October 24, 2014

Friday, October 24th, 2014

IBM and GLOBALFOUNDRIES this week announced that GLOBALFOUNDRIES will acquire IBM’s global commercial semiconductor technology business, including IBM’s intellectual property, technologists and technologies. IBM will pay GLOBALFOUNDRIES $1.5 billion in cash over the next three years to take the chip operations off its hands. The cash consideration will be adjusted by the amount of working capital which is estimated to be $200 million.

Capped by last week’s announcement that Qualcomm Inc. would buy CSR PLC, the automotive semiconductor industry recently has been undergoing a wave of merger and acquisition activity that has shaken up the competitive order of the market, according to IHS Technology.

Adlyte Inc., a developer of high-brightness extreme light sources for advanced semiconductor inspection and metrology applications, announced it has reached a key performance benchmark for its extreme ultraviolet (EUV) light source for high-volume manufacturing (HVM)-readiness.

Gigaphoton Inc., a lithography light source manufacturer, announced that it has succeeded in achieving 3-hour continuous operation of its prototype LPP EUV light source at 50 percent duty cycle and 42-W output, equivalent to usage in a high-volume-manufacturing (HVM) environment.

North America-based manufacturers of semiconductor equipment posted $1.17 billion in orders worldwide in September 2014 (three-month average basis) and a book-to-bill ratio of 0.94, according to the September EMDS Book-to-Bill Report published today by SEMI.   A book-to-bill of 0.94 means that $94 worth of orders were received for every $100 of product billed for the month.

Wrap-up: SEMI’s Strategic Materials Conference

Tuesday, October 7th, 2014

SEMI’s Strategic Materials Conference was held September 30-October 1, 2014, in Santa Clara, CA at the Biltmore hotel.

By Karey Holland, Techcet Group

The 2014 Strategic Materials Conference was very well attended.  There were people from several of the leading IC makers as well as suppliers of equipment and materials to the fabs.  Unfortunately, the audio and video systems were not stellar, so we had to endure some ear shattering system noise, and any light image was not visible on the screens.  Otherwise, the venue was good.  Throughout the conference, several themes were repeated.

Focus on the stability we hope for in post 2013 times, but concern about volatility and uncertainty of the world economics, esp. the recession-like growth numbers in Europe and Japan expected for the next few years. While forecasters (Gartner, IC Insights, VLSI Research, Linx, Techcet Group and others) anticipate IC wafer starts growing at ≥6% CAGR over the next 5 years, there is concern that any number of geo political world problems could throw us back into a global recession.  Attendees had a greater concern than the presenters over the possibility of a future recession, and that the impact would be greater to IC industry now due to the entrenchment of mobile platforms.

Focus on cost of lithography as a driver for increased cost of leading edge MCUs/MPUs … with current nodes, multi-patterning requires many more expose/develop/dep/etch steps than EUV, but EUV has not yet met the requirements for manufacturing implementation.  It is likely that EUV will first be used for only a few critical layers.  DSA (directed self-assembly) may be used also for a few selected critical layers, but issues of defects will likely keep it from use in many layers.

Focus on the expected (and currently numerous options) for advanced devices and implications for materials.  This includes advanced packaging technologies.

450mm wafers may continue to slip, if the other large IC makers (e.g. TSMC, Samsung, GlobalFoundries) don’t agree with Intel on first implementation date/node. Collaboration across the entire ecosystem was stressed for 450mm to become a reality.

Below are things I found particularly interesting in the presentations and/or at the end of day panel discussions.

The key note presentation, “Materials Innovation for the Digital 6th Sense Era,” was by Matt Nowak of Qualcomm.  He discussed both the vision of the Internet of Things (IoT), the required IC devices (including analog & sensors) and implications to materials (and cost to manufacture) from these new IC devices; a perfect start to SMC 2014.  Qualcomm defines the Digital 6th Sense Era is “the augmentation of human ability”, or as Sue Davis put it “intelligent data based extension of our 5 senses ==>to a 6th“. Essentially this is where the ability of the IoT/IoE data feedback can act as our 6th sense by capturing data about one & one’s environment which results in  prediction/information being shared based on data collection and/or user selections regarding the environment around us (or about us, e.g., tele-health).”  Because the smartphone is the “most pervasive platform ever” (US Android users average 106 Apps launched/day), it can serve as a remote connection to the IoT world … be that monitoring our health, schedules, honey-do lists, and improving our understanding and enjoyment of the world around us.  For advanced logic one might expect, lithography for advanced ICs (quad patterning vs EUV) were discussed as key cost drivers.  Other required/expected advanced materials include high mobility channel materials and thin barrier metals (likely Co). Beyond CMOS, new structures and materials may be required to support sensors (bio, chemical, fluidic), nano batteries, piezo, thermal, and solar harvesters.

Mark Thirsk, Linx-Consulting, reviewed IC growth and lack thereof for past years, and observed that 2014 will be “first good year in 8 years” (since 2006), and forecast 6-8% CAGR for the next few years – strongly dependent on the success of the IoT.  IC market growth since 2010 correlates strongly to GDP since 2010, and thus regional GDP differences (e.g. the current European recession) are reflected in IC demand.  Technology challenges & opportunities in for the next 5+ years include advanced logic (3D NAND, and new memory method after 2018), numerous AL (atomic layer) processes, 3D / advanced packaging, patterning efficiency, and complexity.  The electronic materials landscape is changing: the supply chain is merging, and there are new entrants (esp. from Korea, Taiwan & China) in advanced materials such as photoresists. Interestingly, China appears to be focusing more on investing in fabless than fabs.

Duncan Meldrum, Hilltop Economics, said that the current subdued market growth (3% 2013-16) is due to more fiscal responsible people. China & Asia are growing 4 to 7.7%, US & Latin America about 2.1 to 3.1, Euro <2%, and Japan ~1.5%.  The tax increase in Japan is having a very negative impact. He expects the US to see a 5% year over year improvement (very good news) with our investments finally growing in 2nd half of 2014.  He anticipates healthy, but not stellar consumer spending through 2016.

Patrick Ho, Stifel Nicolas, initially discussed that for companies that follow Moore’s Law, that it is increasingly Fab capital intensity (Capex) with addition of FinFETs, new materials (e.g. High k), 3D NAND, and Multi-Patterning (from delayed EUV).  One can assume this will continue to be the case as CMOS devices moves from Si channel to replacement channel filled with SiGe, Ge, or III-V and memories move to new technologies such as ReRAM, STTRAM, etc.  His observation is that only Intel is pulling for 450mm, and if TSMC & Samsung don’t exert more pull, 450mm may not happen (esp. in light of the negative impact to equipment revenue per square inch of silicon).  The top 4 OEMs (ASML, KLA-T, Lam, AMAT) are large enough to push back on the top 3 IC makers, and that consolidation is continuing.  Patrick noted that all 4 top OEMs have dividends, and he anticipates that they will eventually get better valuations.  He showed a nice list of companies he thinks are acquisition candidates (CMC, Nanometrics, Nikon, Nova, Axcelis, Rudolph, Veeco, FormFactor, and Ultratech).  Other comments:  Moore’s law lives, but is under stress.  Innovation w/ or w/o EUV will bring industry back to Moore’s Law.  Changing landscape will help economics of leading players.

Ross Kozarsky, who leads Lux Research’s advanced materials team, discussed the longer range materials he investigates such as graphene, 3D printing, and Meta-materials. Graphene film sheets are of interest for transparent conductive materials (e.g. touchscreens), possibly moving to FETs & sensors.  3D printing has been around 30 yrs; today it’s used mostly for prototyping, but manufacturing use makes sense and could really increase total growth.  Multifunctional and multi-materials printers will be needed.  Autonomous cars are now a big growth opportunity, opening great opportunity for chemical and material companies to innovate.

Geraud Duboix, IBM Almaden, develops porous low k materials for interconnect passivation and their integration (esp. plasma damage).  In the 0.65 to 0.1um timeframe, interconnect RC delay was slowing devices even though the transistors were getting faster, and thus began the drive for lower k insulators.  The ITRS has been showing the need for lower k since its inception, but it also has pushed out the date of the more aggressive low ks.  Initially to achieve lower k, C and F were added to SiO2 to break-up network structure.  Today, they are driving low k down by adding porosity.  Once a big concern, Geraud said that ULK mechanical properties are now no longer a concern with UV treatment, the lowest k being integrated is 2.3-2.4, and new low k materials are emerging. Geraud is working on porous low k materials, to achieve lower k, and larger pores deliver lower k.  He discussed the various pore-sizes in evaluation, the importance of porogens (material in the low k deposition that is later removed to create pores) and methods being used to seal the created pores (especially before conformal barrier metal deposition).  Interestingly, he commented that creating and sealing the larger pores is somewhat easier, although he’s being asked to work on the smaller pores for now.  During the panel discussion Mansour Moinpour (Intel) asked why Geraud was working on smaller pores that are more difficult to fill. Geraud responded that for the designers insulators with 2.0 or 1.8 k would be too big a change and they want 2.4 and 2.2 first.

Todd Younkin, from Intel’s central research (components) novel materials group, discussed that the industry will continue CMOS Scaling through 7nm. As stated by others, lithography is a challenge and using several methods to accomplish patterning, while productivity and pattern placement (alignment) are concerns.  Intel is working on devices with channels of higher mobility materials that Si (III-V or MoS2) as well as beyond CMOS (e.g., GAA) devices.  Todd said that early in device research development, Intel works to make sure manufacturing should be capable of meeting cost expectations. These include the cost of multi-patterning versus EUV, ultra-low k interconnect materials, etc.

Angela Franklin, of TriQuint (recently renamed Qorvo) discussed the challenges of supply management (and unlike others, she projects well when talking, so we could avoid the audio system problems … thanks Angela!).  Angela educated the audience about Qorvo devices (some look more like MEMS with permanent epoxy “cavity” structures that resonate w/ the RF) which are significantly different from the leading edge logic and non-volatile most of us follow.  Unlike the device manufactures that use Si, Qorvo uses smaller substrates of III-V and GaN.  Many films are already on the substrates when purchased.  The fab process is very solvent intensive, and only 1/3 aqueous.  Unlike others, Qorvo uses significant eBeam lithography with up to 28 different resists and many negative resists, as well as metal lift-off (my first job at IBM >30 yrs ago).

Prof. Philip Wong of Stanford gave his typical dynamic and mind-stretching presentation. His discussion was focused on the single digit nodes, and the possible new channel materials for logic (III-V or 2D MoS2, MoSe2, WSe2, WTe2 or ??) and possible new devices, including carbon nanotube FET (CNFET), STTRAM, CBRAM, ReRAM (using HfOx, TaOx, TiOx).  He said that memory chips will hold 32Tbits.  He then smiled and said “none of this before the next 10 years”.  He showed some exciting interleaved memory and logic ideas using a base of 2D or 3D FETs, topped by STTRAM, then 2D or 3D FETs, and then 3D RRAM.  Because the interconnects of the bottom device are present, all processing for the others must be at low temperature (<400C).

Discussion Panel.  When asked about collaboration with materials suppliers, Intel and IBM research had significantly different responses.  Intel invests dollars and works with graduate students on advanced projects and hopefully a “lucky accident” brings advances.  IBM research mentioned that legal issues often get in the way of collaboration with suppliers.

Notes for SMC Day 2 2014 Blog

Tim Hendry, from Intel’s supply management team started off day 2.  A large concern he brought up was what he described as the widening connections between fab, material suppliers, and sub-suppliers.  He then discussed the concerns and possible ways to improve connections, as well as the importance of metrology and verification of chemical quality.  Unfortunately, some of the sub-suppliers are very big chemical companies that have difficulty getting excited about the low volume materials used to make ICs.  He finished up by saying that Intel is focused on controlling the costs of manufacturing that require close partnerships with materials suppliers. Intel is driving for unprecedented collaboration among the materials and sub tier suppliers to achieve cost, performance and defect targets.  The cost of packaging and shipping materials globally is driving investigation into new operating models to cut costs.

Dennis Hausmann of LamRC/NVLS discussed ALD/CVD in more details than others.  For Each CVD/ALD step, an average of $2-$3/wafer is added to manufacturing cost, while only about $1/wafer of this is for chemistry+power+exhaust management.  He reviewed at least 4 versions of ALD tools (furnaces to single wafer) and said that there is a “right ALD tool” for the right deposition job.  He said that single wafer tools with proper development can meet same throughput as batch furnaces.  However, if you look at the development cost, single wafer tools are much better in cost.  For depositions that improve with plasma ALD, single wafer tools also make sense.  An important observation by Dennis was that for ALD, sometimes it is the unknown contaminant that “makes it go”.  This is something that has been observed in the past of copper plating chemistries, as well as some CMP slurries.

James ONeil, CTO Entegris had an interesting title, which should fit most suppliers “Accelerating yield in a disruptive environment”.  James emphasized that suppliers need meaningful process discussions, insights & collaboration with their customers.

Adrienne Pierce of Edwards introduced SCIS collaboration to most of us.  This is a supply chain collaboration working group.  Some topics are tracing defects origins and BKMs for specific process (e.g. ALD).

There were then two parallel sessions; one on advanced memories and the other on 3D packaging.  In the memory session, Norma Sosa of IBM talked about PCRAM (phase change memory, which Micron has been shipping for a few years now), Mark Raynor, Matheson, discussed RRAM for Non-Volatile, and Suresh Upa, SanDisk, discussed packaging implications.

After the breakout, we had presentations from four materials supplier companies.  The four same very similar things.  Dave Bern of Dow Chemical discussed using the “right tool” for collaboration and the importance of making sure suppliers agree to work in areas that fit their “core competencies”.  Wayne Mitchel of Air Products noted that ICs are only 2% of GDP.  He agreed with Dave Bern that suppliers should only agree to work (partner) with customer on areas within expertise, otherwise it takes too much time and money to execute successfully. Jean Marc Girard, Air Liquide discussed the numerous risks of supply chain, from the sub-supplier, the environment (e.g. earthquakes), and materials stability (or lack thereof). Kevin O’Shea of SAFC Hitech emphasized that taking materials from a catalog of low volume and ramping to IC manufacturing needs is not trivial, and may also not be consistent with the materials manufacturer (the sub-supplier, or company that is “primary” in the materials).

The day 2 Panel discussion had more audience participation.  Some discussions I found particularly interesting are discussed below.

Tim (Intel) said the gap is getting wider between Intel, suppliers, sub-suppliers (esp. customs for IC industry). The large sub-supplier that doesn’t have an interest in moving forward – there is no motivation to increase metrology, metrics, etc.  The shrinking sub-supplier base isn’t good for our industry – reduction in cost per bit comes from shrinks and reuse of capital, not only lower cost materials..

Kurt Carlson said that sub suppliers don’t think IC fabrication is the best industry – the IC industry wants more and more, yet wants to pay less and less.  It’s not worth it to us (good sub-suppliers leave because it’s too costly for the small volumes).

Jean Marc said they don’t want to duplicate development costs, if they don’t need to; they would rather use universities and share on things like toxicology.

Dave said it costs millions of dollars to test materials, like EUV.

Mansour Moinpour asked about collaboration on liquid particle, GCMS, and similar – can we have joint & consistent measurements across the industry?  James Entegris responded that end user need to be drivers.  Jean Marc suggested that maybe SEMI standards could drive a standard of industrial analytics.

The value of roadmaps was very different to the various participants, however the idea of regulatory alignment and a roadmap related to this was generally thought to be useful.

The question of cost and logistics … there are some materials that require shipping a lot of water, which adds cost.  Intel said that they are getting into more cost sensitive mobile market and they may be driven to this rather than exact materials copy in near future.  Tim said the Intel CEO is “hell bent” that Intel will make money in the mobile market.  “Intel will pull it off.”

The Week in Review: September 26, 2014

Friday, September 26th, 2014

NANIUM announced it has successfully launched the industry’s largest Wafer-Level Chip Scale Package (WLCSP) in volume.

Pixelligent Technologies announced that it has been selected for a Department of Energy (DOE) solid-state-lighting award to support the continued development of its OLED lighting application.

Extreme-ultraviolet lithography was a leading topic at the SPIE Photomask Technology conference and exhibition, held September 16-17-18 in Monterey, Calif., yet it wasn’t the only topic discussed and examined.

SiTime Corporation, a MEMS analog semiconductor company, this week announced that it has closed $25 million in new financing, which consisted of a combination of structured debt facility of $15 million provided by Capital IP Investment Partners LLC and strategic equity investment from other investors.

Silicon Motion elected Han-Ping Shieh to its Board of Directors.

SPIE Photomask Technology Wrap-up

Tuesday, September 23rd, 2014

Extreme-ultraviolet lithography was a leading topic at the SPIE Photomask Technology conference and exhibition, held September 16-17-18 in Monterey, Calif., yet it wasn’t the only topic discussed and examined. Mask patterning, materials and process, metrology, and simulation, optical proximity correction (OPC), and mask data preparation were extensively covered in conference sessions and poster presentations.

Even with the wide variety of topics on offer at the Monterey Conference Center, many discussions circled back to EUV lithography. After years of its being hailed as the “magic bullet” in semiconductor manufacturing, industry executives and engineers are concerned that the technology will have a limited window of usefulness. Its continued delays have led some to write it off for the 10-nanometer and 7-nanometer process nodes.

EUV photomasks were the subject of three conference sessions and the focus of seven posters. There were four posters devoted to photomask inspection, an area of increasing concern as detecting and locating defects in a mask gets more difficult with existing technology.

The conference opened Tuesday, Sept. 16, with the keynote presentation by Martin van den Brink, the president and chief technology officer of ASML Holding. His talk, titled “Many Ways to Shrink: The Right Moves to 10 Nanometer and Beyond,” was clearly meant to provide some reassurance to the attendees that progress is being made with EUV.

He reported his company’s “30 percent improvement in overlay and focus” with its EUV systems in development. ASML has shipped six EUV systems to companies participating in the technology’s development (presumably including Intel, Samsung Electronics, and Taiwan Semiconductor Manufacturing, which have made equity investments in ASML), and it has five more being integrated at present, van den Brink said.

The light source being developed by ASML’s Cymer subsidiary has achieved an output of 77 watts, he said, and the company expects to raise that to 81 watts by the end of 2014. The key figure, however, remains 100 watts, which would enable the volume production of 1,000 wafers per day. No timeline on that goal was offered.

The ASML executive predicted that chips with 10nm features would mostly be fabricated with immersion lithography systems, with EUV handling the most critical layers. For 7nm chips, immersion lithography systems will need 34 steps to complete the patterning of the chip design, van den Brink said. At that process node, EUV will need only nine lithography steps to get the job done, he added.

Among other advances, EUV will require actinic mask inspection tools, according to van den Brink. Other speakers at the conference stressed this future requirement, while emphasizing that it is several years away in implementation.

Mask making is moving from detecting microscopic defects to an era of mesoscopic defects, according to Yalin Xiong of KLA-Tencor. Speaking during the “Mask Complexity: How to Solve the Issues?” panel discussion on Thursday, Sept. 18, Xiong said actinic mask inspection will be “available only later, and it’s going to be costly.” He predicted actinic tools will emerge by 2017 or 2018. “We think the right solution is the actinic solution,” Xiong concluded.

Peter Buck of Mentor Graphics, another panelist at the Sept. 18 session, said it was necessary to embrace mask complexity in the years to come. “Directed self-assembly has the same constraints as EUV and DUV (deep-ultraviolet),” he observed.

People in the semiconductor industry place high values on “good,” “fast,” and “cheap,” Buck noted. With the advent of EUV lithography and its accompanying challenges, one of those attributes will have to give way, he said, indicating cheapness was the likely victim.

Mask proximity correction (MPC) and Manhattanization will take on increasing importance, Buck predicted. “MPC methods can satisfy these complexities,” he said.

For all the concern about EUV and the ongoing work with that technology, the panelists looked ahead to the time when electron-beam lithography systems with multiple beams will become the litho workhorses of the future.

Mask-writing times were an issue touched upon by several panelists. Shusuke Yoshitake of NuFlare Technology reported hearing about a photomask design that took 60 hours to write. An extreme example, to be sure, but next-generation multi-beam mask writers will help on that front, he said.

Daniel Chalom of IMS Nanofabrication said that with 20nm chips, the current challenge is reduce mask-writing times to less than 15 hours.

In short, presenters at the SPIE conference were optimistic and positive about facing the many challenges in photomask design, manufacturing, inspection, metrology, and use. They are confident that the technical hurdles can be overcome in time, as they have in the past.

Solid State Watch: September 12-18, 2014

Monday, September 22nd, 2014
YouTube Preview Image

The Week in Review: September 19, 2014

Friday, September 19th, 2014

Extreme-ultraviolet lithography systems will be available to pattern critical layers of semiconductors at the 10-nanometer process node, and EUV will completely take over from 193nm immersion lithography equipment at 7nm, according to Martin van den Brink, president and chief technology officer of ASML Holding.

North America-based manufacturers of semiconductor equipment posted $1.35 billion in orders worldwide in August 2014 (three-month average basis) and a book-to-bill ratio of 1.04, according to the August EMDS Book-to-Bill Report published today by SEMI.   A book-to-bill of 1.04 means that $104 worth of orders were received for every $100 of product billed for the month.

Rudolph Technologies has introduced its new SONUS Technology for measuring thick films and film stacks used in copper pillar bumps and for detecting defects, such as voids, in through silicon vias (TSVs).

Samsung Electronics announced this week that it has begun mass producing its six gigabit (Gb) low-power double data rate 3 (LPDDR3) mobile DRAM, based on advanced 20 nanometer (nm) process technology. The new mobile memory chip will enable longer battery run-time and faster application loading on large screen mobile devices with higher resolution.

ProPlus Design Solutions, Inc. announced this week it expanded its sales operations to Europe.

Mentor Graphics this week announced the appointment of Glenn Perry to the role of vice president of the company’s Embedded Systems Division. The Mentor Graphics Embedded Systems Division enables embedded development for a variety of applications including automotive, industrial, smart energy, medical devices, and consumer electronics.

Next Page »