Part of the  

Solid State Technology


The Confab


About  |  Contact

Posts Tagged ‘7nm’

Next Page »

Edge Placement Error Control in Multi-Patterning

Thursday, March 2nd, 2017


By Ed Korczynski, Sr. Technical Editor

SPIE Advanced Lithography remains the technical conference where the leading edge of minimum resolution patterning is explored, even though photolithography is now only part of the story. Leading OEMs continue to impress the industry with more productive ArFi steppers, but the photoresist suppliers and the purveyors of vacuum deposition and etch tools now provide most of the new value-add. Tri-layer-resist (TLR) stacks, specialty hard-masks and anti-reflective coatings (ARC), and complex thin-film depositions and etches all combine to create application-specific lithography solutions tuned to each critical mask.

Multi-patterning using complementary lithography—using argon-fluoride immersion (ArFi) steppers to pattern 1D line arrays plus extreme ultra-violet (EUV) tools to do line cuts—is under development at all leading edge fabs today. Figure 1 shows that edge placement error (EPE) in lines, cut layers, and vias/contacts between two orthogonal patterned layers can result in shorts and opens. Consequently, EPE control is critical for yield within any multi-patterning process flow, including litho-etch-litho-etch (LELE), self-aligned double-patterning (SADP) and self-aligned quadruple-patterning (SAQP).

Fig.1: Plan view schematic of 10nm half-pitch vertical lines overlaid with lower horizontal lines, showing the potential for edge-placement error (EPE). (Source: Y. Borodovsky, SPIE)

Happening the day before the official start of SPIE-AL, Nikon’s LithoVision event featured a talk by Intel Fellow and director of lithography hardware solutions Mark Phillips on the big picture of how the industry may continue to pattern smaller IC device features. Regarding the timing of Intel’s planned use of EUV litho technology, Phillips re-iterated that, “It’s highly desirable for the 7nm node, but we’ll only use it when it’s ready. However, EUVL will remain expensive even at full productivity, so 193i and multi-patterning will continue to be used. In particular we’ll need continued improvement in the 193i tools to meet overlay.”

Yuichi Shibazaki— Nikon Fellow and the main architect of the current generation of Nikon steppers—explained that the current generation of 193i steppers, featuring throughputs of >200 wafers per hour, have already been optimized to the point of diminishing returns. “In order to improve a small amount of performance it requires a lot of expense. So just improving tool performance may not decrease chip costs.” Nikon’s latest productivity offering is a converted alignment station as a stand-alone tool, intended to measure every product wafer before lithography to allow for feed-forward tuning of any stepper; cost and cost-of-ownership may be disclosed after the first beta-site tool reaches a customer by the end of this year.

“The 193 immersion technology continues to make steady progress, but there are not as many new game-changing developments,” confided Michael Lercel, Director of Strategic Marketing for ASML in an exclusive interview with SemiMD. “A major theme of several SPIE papers is on EPE, which traditionally we looked at as dependent upon CD and overlay. Now we’re looking at EPE in patterning more holistically, with need to control the complexity with different error-variables. The more information we can get the more we can control.”

At LithoVision this year, John Sturtevant—SPIE Fellow, and director of RET product development in the Design to Silicon Division at Mentor Graphics—discussed the challenges of controlling variability in multi-layer patterning. “A key challenge is predicting and then mitigating total EPE control,” reminded Sturtevant. “We’ve always paid attention to it, but the budgets that are available today are smaller than ever. Edge-placement is very important ” At the leading edge, there are multiple steps within the basic litho flow that induce proximity/local-neighbor effects which must be accounted for in EDA:  mask making, photoresist exposure, post-exposure bake (PEB), pattern development, and CD-SEM inspection (wherein there is non-zero resist shrinkage).

Due to the inherent physics of EUV lithography, as well as the atomic-scale non-uniformities in the reflective mirrors focusing onto the wafer, EUV exposure tools show significant variation in exposure uniformities. “For any given slit position there can be significant differences between tools. In practice we have used a single model of OPC for all slit locations in all scanners in the fab, and that paradigm may have to change,” said Sturtevant. “It’s possible that because the variation across the scanner is as much as the variation across the slit, it could mean we’ll need scanner-specific cross-slit computational lithography.” More than 3nm variation has been seen across 4 EUVL steppers, and the possible need for tool-specific optical proximity correction (OPC) and source-mask optimization (SMO) would be horrible for managing masks in HVM.

Thin Films Extend Patterning Resolution

Applied Materials has led the industry in thin-film depositions and etches for decades, and the company’s production proven processing platforms are being used more and more to extend the resolution of lithography. For SADP and SAQP MP, there are tunable unit-processes established for sidewall-spacer depositions, and chemical downstream etching chambers for mandrel pull with extreme material selectivity. CVD of dielectric and metallic hard-masks when combined with highly anisotropic plasma etching allows for device-specific and mask-specific pattern transfers that can reduce the line width/edge roughness (LWR/LER) originally present in the photoresist. Figure 2 from the SPIE-AL presentation “Impact of Materials Engineering on Edge Placement Error” by Regina Freed, Ying Zhang, and Uday Mitra of Applied Materials, shows LER reduction from 3.4 to 1.3 nm is possible after etch. The company’s Sym3 chamber features very high gas conductance to prevent etch byproducts from dissociation and re-deposition on resist sidewalls.

Fig.2: 3D schematics (top) and plan view SEM images (bottom) showing that control of plasma parameters can tune the byproducts of etch processes to significantly reduce the line-width roughness (LWR) of minimally scaled lines. (Source: Applied Materials)

TEL’s new SAQP spacer-on-spacer process builds on the work shown last year, using oxide as first spacer and TiO2 as second spacer. Now TEL is exploring silicon as the mandrel, then silicon-nitride as the first spacer, and titanium-oxide as second spacer. This new flow can be tuned so that all-dry etch in a single plasma etch chamber can be used for the final mandrel pull and pattern transfer steps.

Coventor’s 3D modeling software allows companies to do process integration experiments in virtual space, allowing for estimation of yield-losses in pattern transfer due to variations in side-wall profiles and LER. A simulation of 9 SRAM cells with 54 transistors shows that photoresist sidewall taper angle determines both the size and the variability of the final fins. The final capacitance of low-k dielectric in dual-damascene copper metal interconnects can be simulated as a function of the initial photoresist profile in a SAQP flow.


Innovations at 7nm to Keep Moore’s Law Alive

Thursday, January 19th, 2017


By Dave Lammers, Contributing Editor

Despite fears that Moore’s Law improvements are imperiled, the innovations set to come in at the 7nm node this year and next may disprove the naysayers. EUV lithography is likely to gain a toehold at the 7nm node, competing with multi-patterning and, if all goes well, shortening manufacturing cycles. Cobalt may replace tungsten in an effort to reduce resistance-induced delays at the contacts, a major challenge with finFET transistors, experts said.

While the industry did see a slowdown in Moore’s Law cost reductions when double patterning became necessary several years ago, Scotten Jones, who runs a semiconductor consultancy focused on cost analysis, said Intel and the leading foundries are back on track in terms of node-to-node cost improvements.

Speaking at the recent SEMI Industry Strategy Symposium (ISS), Jones said his cost modeling backs up claims made by Intel, GlobalFoundries, and others that their leading-edge processes deliver on die costs. Cost improvements stalled at TSMC for the16nm node due to multi-patterning, Jones said. “That pause at TSMC fooled a lot of people. The reality now may surprise those people who said Moore’s Law was dead. I don’t believe that, and many technologists don’t believe that either,” he said.

As Intel has adopted a roughly 2.5-year cadence for its more-aggressive node scaling, Jones said “the foundries are now neck and neck with Intel on density.” Intel has reached best-ever yield levels with its finFET-based process nodes, and the foundries also report reaching similar yield levels for their FinFET processes. “It is hard, working up the learning curve, but these companies have shown we can get there,” he said.

IC Knowledge cost models show the chip industry is succeeding in scaling density and costs. (Source: Scotten Jones presentation at 2017 SEMI ISS)

TSMC, spurred by its contract with Apple to supply the main iPhone processors, is expected to be first to ship its 7nm products late this year, though its design rules (contacted poly pitch and minimum metal pitch) are somewhat close to Intel’s 10nm node.

While TSMC and GlobalFoundries are expected to start 7nm production using double and quadruple patterning, they may bring in EUV lithography later. TSMC has said publicly it plans to exercise EUV in parallel with 193i manufacturing for the 7nm node. Samsung has put its stake in the ground to use EUV rather than quadruple patterning in 2018 for critical layers of its 7nm process. Jones, president of IC Knowledge LLC, said Intel will have the most aggressive CPP and MPP pitches for its 7nm technology, and is likely to use EUV in 2019-2020 to push its metal pitches to the minimum possible with EUV scanners.

EUV progress at imec

In an interview at the 62nd International Electron Devices Meeting (IEDM) in San Francisco in early December, An Steegen, the senior vice president of process technology at Imec (Leuven, Belgium), said Imec researchers are using an ASML NXE 3300B scanner with 0.3 NA optics and an 80-Watt power supply to pattern about 50 wafers per hour.

“The stability on the tool, the up time, has improved quite a lot, to 55 percent. In the best weeks we go well above 70 percent. That is where we are at today. The next step is a 125-Watt power supply, which should start rolling out in the field, and then 250 Watts.”

Steegen said progress is being made in metal-containing EUV resists, and in development of pellicles “which can withstand hydrogen in the chamber.”

If those challenges can be met, EUV would enable single patterning for vias and several metal layers in the middle of the line (MOL), using cut masks to print the metal line ends. “For six or seven thin wires and vias, at the full (7nm node) 32nm pitch, you can do it with a single exposure by going to EUV. The capability is there,” Steegen said.

TSMC’s 7nm development manager, S.Y. Wu, speaking at IEDM, said quadruple patterning and etch (4P4E) will be required for critical layers until EUV reaches sufficient maturity. “EUV is under development (at TSMC), and we will use 7nm as the test vehicle.”

Huiming Bu was peppered with questions following a presentation of the IBM Alliance 7nm technology at IEDM.

Huiming Bu, who presented the IBM Alliance 7nm paper at IEDM, said “EUV delivers significant depth of field (DoF) improvement” compared with the self-aligned quadruple (SAQP) required for the metal lines with immersion scanners.

A main advantage for EUV compared with multi-patterning is that designs would spend fewer days in the fabs. Speaking at ISS, Gary Patton, the chief technology officer at GlobalFoundries, said EUV could result in 30-day reductions in fab cycle times, compared with multiple patterning with 193nm immersion scanners, based on 1.5 days of cycle time per mask layer.

Moreover, EUV patterns would produce less variation in electrical performance and enable tighter process parameters, Patton said.

Since designers have become accustomed to using several colors to identify multi-patterning layers for the 14nm node, the use of double and quadruple patterning at the 7nm node would not present extraordinary design challenges. Moving from multi-patterning to EUV will be largely transparent to design teams as foundries move from multi-patterning to EUV for critical layers.

Interconnect resistance challenges

As interconnects scale and become more narrow, signals can slow down as electrons get caught up in the metal grain boundaries. Jones estimates that as much as 85 percent of parasitic capacitance is in the contacts.

For the main interconnects, nearly two decades ago, the industry began a switch from aluminum to copper. Tungsten has been used for the contacts, vias, and other metal lines near the transistor, partly out of concerns that copper atoms would “poison” the nearby transistors.

Tungsten worked well, partly because the bi-level liner – tantalum nitride at the interface with the inter-level dielectric (ILD) and tantalum at the metal lines – was successful at protecting against electromigration. The TaN-Ta liner is needed because the fluorine-based CVD processes can attack the silicon. For tungsten contacts, Ti serves to getter oxygen, and TiN – which has high resistance — serves as an oxygen and fluorine barrier.

However, as contacts and MOL lines shrunk, the thickness of the liner began to equal the tungsten metal thicknesses.

Dan Edelstein, an IBM fellow who led development of IBM’s industry-leading copper interconnect process, said a “pinch point” has developed for FinFETs at the point where contacts meet the middle-of-the-line (MOL) interconnects.

“With cobalt, there is no fluorine in the deposition process. There is a little bit of barrier, which can be either electroplated or deposited by CVD, and which can be polished by CMP. Cobalt is fairly inert; it is a known fab-friendly metal,” Edelstein said, due to its longstanding use as a silicide material.

As the industry evaluated cobalt, Edelstein said researchers have found that cobalt “doesn’t present a risk to the device. People have been dropping it in, and while there are still some bugs that need to be worked out, it is not that hard to do. And it gives a big change in performance,” he said.

Annealing advantages to Cobalt

Contacts are a “pinch point” and the industry may switch to cobalt (Source: Applied Materials)

An Applied Materials senior director, Mike Chudzik, writing on the company’s blog, said the annealing step during contact formation also favors cobalt: “It’s not just the deposition step for the bulk fill involved – there is annealing as well. Co has a higher thermal budget making it possible to anneal, which provides a superior, less granular fill with no seams and thus lowers overall resistance and improves yield,” Chudzik explained.

Increasing the volume of material in the contact and getting more current through is critical at the 7nm node. “Pretty much every chipmaker is working aggressively to alleviate this issue. They understand if it’s not resolved then it won’t matter what else is done with the device to try and boost performance,” Chudzik said.

Prof. Koike strikes again

Innovations underway at a Japanese university aim to provide a liner between the cobalt contact fill material and the adjacent materials. At a Sunday short course preceding the IEDM, Reza Arghavani of Lam Research said that by creating an alloy of cobalt and approximately 10 percent titanium, “magical things happen” at the interfaces for the contact, M0 and M1 layers.

The idea for adding titanium arose from Prof. Junichi Koike at Tohoku University, the materials scientist who earlier developed a manganese-copper solution for improved copper interconnects. For contacts and MOL, the Co-Ti liner prevents diffusion into the spacer oxide, Arghavani said. “There is no (resistance) penalty for the liner, and it is thermally stable, up to 400 to 500 degrees C. It is a very promising material, and we are working on it. W (tungsten) is being pushed as far as it can go, but cobalt is being actively pursued,” he said.

Stressor changes ahead

Presentations at the 2016 IEDM by the IBM Alliance (IBM, GlobalFoundries, and Samsung) described the use of a stress relaxed buffer (SRB) layer to induce stress, but that technique requires solutions for the defects introduced in the silicon layer above it. As a result of that learning process, SRB stress techniques may not come into the industry until the 5 nm node, or a second-generation 7nm node.

Technology analyst Dick James, based in Ottawa, said over the past decade companies have pushed silicon-germanium stressors for the PFET transistors about as far as practical.

“The stress mechanisms have changed since Intel started using SiGe at the 90nm node. Now, companies are a bit mysterious, and nobody is saying what they are doing. They can’t do tensile nitride anymore at the NFET; there is precious little room to put linear stress into the channel,” he said.

The SRB technique, James said, is “viable, but it depends on controlling the defects.” He noted that Samsung researchers presented work on defects at the IEDM in December. “That was clearly a research paper, and adding an SRB in production volumes is different than doing it in an R&D lab.”

James noted that scaling by itself helps maintain stress levels, even as the space for the stressor atoms becomes smaller. “If companies shorten the gate length and keep the same stress as before, the stress per nanometer at least maintains itself.”

Huiming Bu, the IBM researcher, was optimistic, saying that the IBM Alliance work succeeded at adding both compressive and tensile strain. The SRB/SSRW approach used by the IBM Alliance was “able to preserve a majority – 75 percent – of the stress on the substrate.”

Jones, the IC Knowledge analyst, said another area of intense interest in research is high-mobility channels, including the use of SiGe channel materials in the PMOS FinFETS.

He also noted that for the NMOS finFETs, “introducing tensile stress in fins is very challenging, with lots of integration issues.” Jones said using an SRB layer is a promising path, but added: “My point here is: Will it be implemented at 7 nm? My guess is no.”

Putting it in a package

Steegen said innovation is increasingly being done by the system vendors, as they figure out how to combine different ICs in new types of packages that improve overall performance.

System companies, faced with rising costs for leading-edge silicon, are figuring out “how to add functionality, by using packaging, SOC partitioning and then putting them together in the package to deliver the logic, cache, and IOs with the right tradeoffs,” she said.

Air-Gaps for FinFETs Shown at IEDM

Friday, October 28th, 2016


By Ed Korczynski, Sr. Technical Editor

Researchers from IBM and Globalfoundries will report on the first use of “air-gaps” as part of the dielectric insulation around active gates of “10nm-node” finFETs at the upcoming International Electron Devices Meeting (IEDM) of the IEEE ( Happening in San Francisco in early December, IEDM 2016 will again provide a forum for the world’s leading R&D teams to show off their latest-greatest devices, including 7nm-node finFETs by IBM/Globalfoundries/Samsung and by TSMC. Air-gaps reduce the dielectric capacitance that slows down ICs, so their integration into transistor structures leads to faster logic chips.

History of Airgaps – ILD and IPD

As this editor recently covered at SemiMD, in 1998, Ben Shieh—then a researcher at Stanford University and now a foundry interface for Apple Corp.—first published (Shieh, Saraswat & McVittie. IEEE Electron Dev. Lett., January 1998) on the use of controlled pitch design combined with CVD dielectrics to form “pinched-off keyholes” in cross-sections of inter-layer dielectrics (ILD).

In 2007, IBM researchers showed a way to use sacrificial dielectric layers as part of a subtractive process that allows air-gaps to be integrated into any existing dielectric structure. In an interview with this editor at that time, IBM Fellow Dan Edelstein explained, “we use lithography to etch a narrow channel down so it will cap off, then deliberated damage the dielectric and etch so it looks like a balloon. We get a big gap with a drop in capacitance and then a small slot that gets pinched off.

Intel presented on their integration of air-gaps into on-chip interconnects at IITC in 2010 but delayed use until the company’s 14nm-node reached production in 2014. 2D-NAND fabs have been using air-gaps as part of the inter-poly dielectric (IPD) for many years, so there is precedent for integration near the gate-stack.

Airgaps for finFETs

Now researchers from IBM and Globalfoundries will report in (IEDM Paper #17.1, “Air Spacer for 10nm FinFET CMOS and Beyond,” K. Cheng et al) on the first air-gaps used at the transistor level in logic. Figure 1 shows that for these “10nm-node” finFETs the dielectric spacing—including the air-gap and both sides of the dielectric liner—is about 10 nm. The liner needs to be ~2nm thin so that ~1nm of ultra-low-k sacrificial dielectric remains on either side of the ~5nm air-gap.

Fig.1: Schematic of partial air-gaps only above fin tops using dielectric liners to protect gate stacks during air-gap formation for 10nm finFET CMOS and beyond. (source: IEDM 2016, Paper#17.1, Fig.12)

These air-gaps reduced capacitance at the transistor level by as much as 25%, and in a ring oscillator test circuit by as much as 15%. The researchers say a partial integration scheme—where the air-gaps are formed only above the tops of fin— minimizes damage to the FinFET, as does the high-selectivity etching process used to fabricate them.

Figure 2 shows a cross-section transmission electron micrograph (TEM) of what can go wrong with etch-back air-gaps when all of the processes are not properly controlled. Because there are inherent process:design interactions needed to form repeatable air-gaps of desired shapes, this integration scheme should be extendable “beyond” the “10-nm node” to finFETs formed at tighter pitches. However, it seems likely that “5nm-node” logic FETs will use arrays of horizontal silicon nano-wires (NW), for which more complex air-gap integration schemes would seem to be needed.

Fig.2: TEM image of FinFET transistor damage—specifically, erosion of the fin and source-drain epitaxy—by improper etch-back of the air-gaps at 10nm dimensions. (source: IEDM 2016, Paper#17.1, Fig.10)


Mentor Graphics Extends Offering to Support TSMC 7nm and 16FFC FinFET Process Technologies

Wednesday, September 21st, 2016

Mentor Graphics Corp. (NASDAQ: MENT) today announced further enhancements and optimizations for various products within the Calibre Platform, and Analog FastSPICE (AFS) Platform, as well as the completion of further certifications and reference flows for Taiwan Semiconductor Manufacturing Corporation (TSMC) 16FFC FinFET and 7nm FinFET processes. Moreover, the Calibre offering has been extended on additional established TSMC processes in support of the growing Internet of Things (IoT) design market requirements.

The AFS Platform, including AFS Mega simulation, has been certified for the TSMC 16FFC FinFET and the TSMC 7nm FinFET process technologies through TSMC’s SPICE Simulation Tool Certification Program. The AFS Platform supports TSMC design platforms for mobile, HPC, automotive, and IoT/wearables. Analog, mixed-signal, and RF design teams at leading semiconductor companies worldwide will benefit from using Analog FastSPICE to efficiently verify their chips designed in 16FFC and 7nm FinFET technologies.

Mentor’s Calibre xACT™ extraction offering is now certified for the TSMC 16FFC FinFET and the TSMC 7nm FinFET process technologies. Calibre xACT extraction leverages its built-in deterministic fast field-solver engine to deliver needed accuracy around three-dimensional FinFET devices and local interconnect. Its scalable multiprocessing delivers sufficient punch for large leading-edge digital designs. In addition, both companies continue extraction collaboration in established process nodes, with additional corner variation test cases and tighter criteria to ensure tool readiness for IoT applications.

The Calibre PERC™ reliability platform has also been enhanced to enable TSMC 7nm customers to run point-to-point resistance checks at full chip. This greater capacity allows customers to quickly analyze interconnect robustness at all levels (IP, block, and full chip) while verifying lower resistance paths on critical electrostatic discharge (ESD) circuitry, helping ensure long-term chip reliability. Likewise, Calibre Multi-Patterning functionality has been enhanced for 7nm, including new analysis, graph reduction and visualization capabilities which are essential to customers designing and debugging this completely new multi-patterning technique.

The Calibre YieldEnhancer ECOFill solution, initially developed for 20nm, has now been extended to all TSMC process nodes from 7nm to 65nm. Designers at all process nodes will now be able to minimize fill runtimes, manage fill hierarchy, and minimize shape removal when implementing changes to the initial design.

Mentor’s Nitro-SoC P&R platform has also been enhanced to support advanced 7nm requirements, such as floorplan boundary cell insertion, stacking via routing, M1 routing and cut-metal methodology, tap cell insertion and swapping, and ECO flow methodology. Certification of the flow integration of these N7 features are on-going. For 16FFC, the needed tool features have been validated by TSMC, and Mentor is optimizing its correlation with sign-off analysis.

“Today’s chip design teams are looking at different process nodes to implement their complete solution,” said Joe Sawicki, vice president and general manager of Mentor Graphics Design-to-Silicon Division. “By working with TSMC, Mentor is able to provide mutual customers with a single solution that is not only certified, but also includes the latest tool capabilities, for whichever TSMC process node they choose.”

“TSMC’s long-standing collaboration with Mentor Graphics enables both companies to work together effectively to identify new challenges and develop innovative solutions across all process nodes,” said Suk Lee, TSMC senior director, Design Infrastructure Marketing Division. “The Mentor Analog FastSPICE Platform, AFS Mega, and Calibre xACT tools have successfully met the accuracy and compatibility requirements for 16FFC and 7nm FinFET technologies. That certification, along with the Calibre Platform’s provision of fast, accurate physical verification, and extraction solutions critical to 7nm, ensures mutual customers they have access to EDA tools that are optimized for the newest process technologies.”

Mentor Graphics Enhances Support for TSMC 7nm Design Starts and 10nm Production

Thursday, March 17th, 2016

Mentor Graphics Corporation (NASDAQ: MENT) today announced further enhancements and optimizations to the Calibre® platform and Analog FastSPICE™ (AFS) platform by completing TSMC 10nm FinFET V1.0 certification. In addition, the Calibre and Analog FastSPICE platforms are ready for early design starts and IP design on TSMC’s 7nm FinFET process based on the most current Design Rule Manual (DRM) and SPICE model.

To help mutual customers prepare their designs for advanced manufacturing processes, Mentor has made improvements for 10nm physical verification, accelerating the runtime of the Calibre nmDRC™ sign-off tool compared to the tool’s runtime when it was initially certified for required 10nm accuracy last year. New device parameters of the 10nm process are supported in the Calibre nmLVS™ tool for more accurate SPICE models and self-heating simulation. Mentor has also enhanced the parasitic accuracy in the Calibre xACT™ solution, and is actively improving layout parasitic extraction flow to meet 10nm requirements.

The Calibre platform also helps designers improve design reliability and manufacturability. The TSMC reliability offering leverages the Calibre PERC™ reliability verification solution, now with enhanced techniques for 10nm resistance and current density checking. For design for manufacturing (DFM), Mentor added color-aware fill and more sophisticated alignment and spacing rules to the SmartFill feature of the Calibre YieldEnhancer tool. Mentor also optimized the Calibre DesignREV™ chip finishing tool, the Calibre RVE™ results viewer, and the Calibre RealTime interface to give designers easier integration and debugging capabilities for multi-patterning, layout vs. schematic (LVS) comparison, and electrical rule checking (ERC) and reliability verification.

Mentor and TSMC are now collaborating on bringing the Calibre platform’s broad capabilities to the 7nm FinFET process. The Calibre nmDRC and Calibre nmLVS tools are already certified for customers’ early design starts. TSMC and Mentor are expanding use of the SmartFill functionality and Calibre multi-patterning capabilities to support the technology requirements of 7nm.

For fast, accurate circuit simulation, TSMC certified the AFS platform, including the AFS Mega circuit simulator, for 10nm V1.0. The AFS platform is also certified for the latest version of the 7nm DRM and SPICE for early design starts.

The Mentor place-and-route platform—including the Olympus-SoC™ system—has been enhanced to support advanced design rules at 10nm, and Mentor is optimizing its correlation with sign-off extraction and static timing analysis tools. This collaboration has also been extended to 7nm.

“We continue to collaborate with Mentor Graphics to provide design solutions and services that will help our mutual customers become successful with their 7nm designs,” said Suk Lee, TSMC senior director, Design Infrastructure Marketing Division. “Working together, we are also enabling the full production release of our 10nm technology design support.”

“To get the world’s most advanced processes into the hands of today’s leading SoC designers requires intense collaboration between the foundry and the EDA supplier,” said Joe Sawicki, vice president and general manager of Mentor Graphics Design-to-Silicon Division. “We’re honored that TSMC continues to leverage the proven quality, performance and breadth of Mentor platforms in its ecosystem strategy for the future.”

TSMC Readies 7nm Chip Ecosystem, Infrastructure for 2017

Wednesday, March 16th, 2016


By Jeff Dorsch, Contributing Editor

Taiwan Semiconductor Manufacturing Company came to Silicon Valley on Tuesday for a day of presentations on its latest chip technology. The TSMC Technology Symposium for North America drew more than 1,000 attendees at the San Jose Convention Center.

The world’s largest silicon foundry led off the day with a pair of announcements: ARM Holdings and TSMC said they would collaborate on 7-nanometer FinFET process technology for ultra-low-power high-performance computing (HPC) system-on-a-chip devices, building on their previous experience with 16nm and 10nm FinFET process technology, while MediaTek and TSMC extended their partnership to develop Internet of Things and wearable electronics products, using the IC design house’s MT2523 chipset for fitness smartwatches, introduced in January and fabricated with TSMC’s 55nm ULP process.

TSMC’s work with ARM on the 16nm and 10nm nodes employed ARM’s Artisan foundation physical intellectual property, as will their 7nm efforts.

On Tuesday afternoon, the hundreds of attendees heard first from BJ Woo, TSMC’s vice president of business development, on the company’s advanced technology, including its moves toward supporting radio-frequency IC (RFIC) designs for smartphone chips and other areas of wireless communications.

“Cellular RF and WLAN are RF technology drivers,” she said. Looking toward 4G LTE Carrier Aggregation, TSMC began offering its 28HPC RF process to customers in late 2015 and will roll out the 28HPC+ RF process in the second quarter of this year, Woo added.

TSMC has won 75 percent of the business for RFIC applications, she asserted.

The foundry will start making 10nm FinFET chips for flagship smartphones and “phablets” this year, with 7nm FinFET devices for those products in 2017, according to Woo.

The business development executive also touted the company’s “mature 28-nanometer processes,” the 28HPC and 28HPC+, saying they are “rising in both volume and customer tape-outs.”

TSMC has been shipping automotive chips meeting industry standards since 2014, Woo noted, primarily for advanced driver assistance systems (ADAS) and infotainment electronics. The foundry is now working on vehicle control technology, employing microcontrollers.

The company’s 16FF+ process has been used in 50 customer tape-outs, Woo said. “Many have achieved first-silicon success,” she added. TSMC is putting its 16FFC process into volume production during this quarter.

“Automotive will be the [semiconductor] industry focus,” Woo predicted.

She also spoke about the company’s MD2 local interconnect technology, its 1D back-end-of-line process, and its spacer BEOL process.

Regarding 7nm chips, Woo said the company will offer two “tracks” of such chips, for high-performance computing and mobile applications. “Both will be available at the same time,” she said.

Most of the semiconductor production equipment being used for fabrication of 10nm chip will also be used for 7nm manufacturing, according to Woo. Those 7nm chips will be 10 to 15 percent faster than 10nm chips, while reducing power consumption by 35 to 40 percent, she said.

Risk production of 7nm chips will begin one year from now, in March of 2017, she said.

Suk Lee, senior director of TSMC’s Design Infrastructure Marketing Division, reported on development of electronic design automation (EDA) products for the 16nm node and beyond.

“Low-power solutions are ready,” he said of the foundry’s 16FFC process. IP is available to use with 16FFC for automotive, IoT, HPC, and mobile computing applications, he noted.

Lee reviewed what the company’s EDA partners – Mentor Graphics, Synopsys, Cadence Design Systems, ANSYS, and ATopTech – have available for 10nm chip design and verification.

Design and manufacturing of 7nm chips will involve cut-metal handling and multiple patterning, according to Lee. “We’ve used this technology on 16 nanometer and previous generations,” he said of cut-metal handling.

TSMC will support multiple SPICE simulators, having developed hybrid-format netlist support, Lee said. Pre-silicon design kits for 7nm chips will be available in the third quarter of 2016, he added.

The TSMC9000 Program for automotive/IoT products will be “up and running” in Q3 of this year, providing “automotive-grade qualification requirements in planning,” he said.

Lee also spoke about the foundry’s offerings in 3D chips, featuring “full integration of packaging and IC design” with TSMC’s InFO technology. The HBM2 CoWoS design kit will be out in the second quarter of 2016, he said. “We’re very excited about that,” Lee added.

George Liu, senior director of TSMC’s Sensor & Display Business Development, said, “The Internet of Things will drive the next semiconductor growth.” When it comes to the IoT and the Internet of Everything, “forecasts are all over the map,” he noted.

Taking diversification as his theme, Liu said TSMC’s specialty technology will help bridge the connection between the natural world and the computing cloud. First there is the “signal chain” of analog chips and sensors, leading to the “data chain” of connectivity, he said.

Liu reviewed a wide variety of relevant technologies, such as CMOS image sensors, microelectromechanical system (MEMS devices, embedded flash memories, biometrics, touch and display technology, and power management ICs.

At the all-day conference, which included an ecosystem exhibition by partner companies, TSMC emphasized its readiness to take on 28nm, 16nm, 10nm, and 7nm chip designs, along with the more mature process technologies. It’s game on for the foundry business.

EUV Resists and Stochastic Processes

Friday, March 4th, 2016


By Ed Korczynski, Sr. Technical Editor

In an exclusive interview with Solid State Technology during SPIE-AL this year, imec Advanced Patterning Department Director Greg McIntyre said, “The big encouraging thing at the conference is the progress on EUV.” The event included a plenary presentation by TSMC Nanopatterning Technology Infrastructure Division Director and SPIE Fellow Anthony Yen on “EUV Lithography: From the Very Beginning to the Eve of Manufacturing.” TSMC is currently learning about EUVL using 10nm- and 7nm-node device test structures, with plans to deploy it for high volume manufacturing (HVM) of contact holes at the 5nm node. Intel researchers confirm that they plan to use EUVL in HVM for the 7nm node.

Recent improvements in EUV source technology— 80W source power had been shown by the end of 2014, 185W by the end of 2015, and 200W has now been shown by ASML—have been enabled by multiple laser pulses tuned to the best produce plasma from tin droplets. TSMC reports that 518 wafers per day were processed by their ASML EUV stepper, and the tool was available ~70% of the time. TSMC shows that a single EUVL process can create 46nm pitch lines/spaces using a complex 2D mask, as is needed for patterning the metal2 layer within multilevel on-chip interconnects.

To improve throughput in HVM, the resist sensitivity to the 13.54nm wavelength radiation of EUV needs to be improved, while the line-width roughness (LWR) specification must be held to low single-digit nm. With a 250W source and 25 mJ/cm2 resist sensitivity an EUV stepper should be able to process ~100 wafer-per-hour (wph), which should allow for affordable use when matched with other lithography technologies.

Researchers from Inpria—the company working on metal-oxide-based EUVL resists—looked at the absorption efficiencies of different resists, and found that the absorption of the metal oxide based resists was ≈ 4 to 5 times higher than that of the Chemically-Amplified Resist (CAR). The Figure shows that higher absorption allows for the use of proportionally thinner resist, which mitigates the issue of line collapse. Resist as thin as 18nm has been patterned over a 70nm thin Spin-On Carbon (SOC) layer without the need for another Bottom Anti-Reflective Coating (BARC). Inpria today can supply 26 mJ/cm2 resist that creates 4.6nm LWR over 140nm Depth of Focus (DoF).

To prevent pattern collapse, the thickness of resist is reduced proportionally to the minimum half-pitch (HP) of lines/spaces. (Source: JSR Micro)

JEIDEC researchers presented their summary of the trade-off between sensitivity and LWR for metal-oxide-based EUV resists:  ultra high sensitivity of 7 mJ/cm2 to pattern 17nm lines with 5.6nm LWR, or low sensitivity of 33 mJ/cm2 to pattern 23nm lines with 3.8nm LWR.

In a keynote presentation, Seong-Sue Kim of Samsung Electronics stated that, “Resist pattern defectivity remains the biggest issue. Metal-oxide resist development needs to be expedited.” The challenge is that defectivity at the nanometer-scale derives from “stochastics,” which means random processes that are not fully predictable.

Stochastics of Nanopatterning

Anna Lio, from Intel’s Portland Technology Development group, stated that the challenges of controlling resist stochastics, “could be the deal breaker.” Intel ran a 7-month test of vias made using EUVL, and found that via critical dimensions (CD), edge-placement-error (EPE), and chain resistances all showed good results compared to 193i. However, there are inherent control issues due to the random nature of phenomena involved in resist patterning:  incident “photons”, absorption, freed electrons, acid generation, acid quenching, protection groups, development processes, etc.

Stochastics for novel chemistries can only be controlled by understanding in detail the sources of variability. From first-principles, EUV resist reactions are not photon-chemistry, but are really radiation-chemistry with many different radiation paths and electrons which can be generated. If every via in an advanced logic IC must work then the failure rate must be on the order of 1 part-per-trillion (ppt), and stochastic variability from non-homogeneous chemistries must be eliminated.

Consider that for a CAR designed for 15mJ/cm2 sensitivity, there will be just:

145 photons/nm2 for 193, and

10 photons/nm2 for EUV.

To improve sensitivity and suppress failures from photon shot-noise, we need to increase resist absorption, and also re-consider chemical amplification mechanisms. “The requirements will be the same for any resist and any chemistry,” reminded Lio. “We need to evaluate all resists at the same exposure levels and at the same rules, and look at different features to show stochastics like in the tails of distributions. Resolution is important but stochastics will rule our world at the dimensions we’re dealing with.”


Solid State Watch: July 3-9, 2015

Friday, July 10th, 2015
YouTube Preview Image

New Applied PVD system targets TiN hardmasks for 10nm, 7nm chips

Tuesday, May 19th, 2015


By Jeff Dorsch, Contributing Editor

Applied Materials today introduces the Applied Endura Cirrus HTX PVD, a physical vapor deposition system for creating titanium nitride hardmask films that could be used in fabricating 10-nanometer and 7nm chips.

“Titanium nitride is the metal hardmask of choice,” harder than copper and nearly as hard as diamond, says Sree Kesapragada, Applied’s global product manager for Metal Deposition Products.

“Patterning plays key role in defining the interconnect,” Kesapragada says. “Perfect via alignment is critical for device yield. Hardmask ensures the perfect via alignment critical for yield.”

The hardmasks created with the Endura Cirrus HTX TiN system strike the required balance between neutral stress and film density hardness, he asserts. The TiN hardmask, meant to resist the erosion of etching, helps ensure that via etches land where they are supposed to, and not too close to neighboring vias, which can creates shorts.

Metal hardmask layer manages alignment errors.

Applied has worked with customers at multiple sites in developing the new PVD system over the past two to three years, according to Kesapragada. He emphasizes that the Cirrus HTX TiN system offers “precision control over TiN crystal growth,” as the process chamber is “designed for tensile high-density TiN films.” The new PVD system enables high density, tensile films thanks to a high level of ionization during deposition made possible by a high frequency source.

High film desnity is needed to prevent erosion, and a neutral-to-tensile stress is needed for pattern fidelity. CVD/ALD films have tensile stress, but are low density. Traditionally deposited TiN films have good density, but compressive stress.

The formation of “islands” of TiN crystals is almost like chemical vapor deposition, “layer by layer,” Kesapragada says, “in a PVD chamber.”

In the process chamber, the first of its kind, titanium atoms are reactively sputtered in a nitrogen-based plasma, allowing for tunable composition, according to Applied. This chamber can be used for high-volume manufacturing of semiconductors with 7nm features, covering two process-node generations, Kesapragada says.

There is also “very established integration” with chemical mechanical planarization equipment, he adds.

Applied is the market leader in TiN PVD systems, with more than 200 systems shipped, according to Kesapragada. Those PVD systems have more than 700 process chambers, he adds.

The Endura Cirrus HTX TiN PVD system is being formally introduced this week at the IEEE’s 2015 International Interconnect Technology Conference in Grenoble, France.

Complexity is the Theme at Lithography Conference

Monday, February 23rd, 2015

By Jeff Dorsch, contributing editor

Nikon and KLA-Tencor put on separate conferences in San Jose, Calif., on Sunday, February 22, tackling issues in advanced optical lithography. The overarching theme in both sessions was the increased complexity of lithography as it approaches the 10-nanometer and 7nm process nodes.

“Complexity is much higher,” said Kevin Lucas of Synopsys at the Nikon event, LithoVision 2015. He noted that at the 28nm process node, lithographers could resort to five different options. For 14nm or 16nm, that expanded to eight options. There are 21 options available at 10nm, Lucas said, and at 7nm that explodes to more than 71 options.

“The increase in complexity is pretty dramatic,” he observed.

Electronic design automation vendors have “to provide more accurate modeling,” Lucas said. “We will have to go to better methods of [optical proximity correction].”

Ralph Dammel of EMD Performance Materials reviewed the situation in semiconductor materials as IC gate lengths continue to shrink. “We’re going to move from adding new elements to different forms of elements,” he said, such as graphene, silicine, black phosphorus, and molybdenum disulfide.

At the Lithography Users Forum, the event put on by KLA-Tencor, Mark Phillips of Intel said, “Scaling can continue, but it needs improved metrology.” He added, “We need side-by-side accuracy metrics.”

Phillips reported on Intel’s work with ASML Holding on developing pellicles for the reticles of ASML’s extreme-ultraviolet lithography systems. The companies have together come up with a prototype pellicle, which needs more development as a commercial product, he said.

Next Page »