Part of the  

Solid State Technology

  and   

The Confab

  Network

About  |  Contact

Headlines

Headlines

Research Alert: Dec. 17, 2013

Low-power tunneling transistor for high-performance devices at low voltage

A new type of transistor that could make possible fast and low-power computing devices for energy-constrained applications such as smart sensor networks, implantable medical electronics and ultra-mobile computing is feasible, according to Penn State researchers. Called a near broken-gap tunnel field effect transistor (TFET), the new device uses the quantum mechanical tunneling of electrons through an ultrathin energy barrier to provide high current at low voltage.

Penn State, the National Institute of Standards and Technology and IQE, a specialty wafer manufacturer, jointly presented their findings at the International Electron Devices Meeting in Washington, D.C. The IEDM meeting includes representatives from all of the major chip companies and is the recognized forum for reporting breakthroughs in semiconductor and electronic technologies.

Crystal film growth: nanosheets extend epitaxial growth applications

Epitaxial growth has become increasingly important for growing crystalline thin films with tailored electronic, optical and magnetic properties for technological applications. However ,the approach is limited by the high structural similarities required between an underlying substrate and a growing crystal layer on top of it. Takayoshi Sasaki and colleagues at the International Center for Materials Nanoarchitectonics (MANA) and the University of Tokyo in Japan demonstrate how using two-dimensional materials they can extend the versatility of epitaxial growth techniques.

With the increasing attention on two-dimensional materials over recent years Takayoshi Sasaki and colleagues decided to look into molecularly thin two-dimensional crystals as possible seed layers to alleviate lattice matching requirements in a manner similar to Komo’s van der Waals epitaxy. They deposited nanosheets of either Ca2Nb3O10-, Ti0.87O20.52-, or MoO2δ- as highly organised layers onto amorphous glass.  On these different surfaces they grew different orientations of SrTiO3, an important perovskite for various technological applications. The approach demonstrated the ability to grow different orientations of SrTiO3 with a high level of precision.

Graphene-based nano-antennas may enable networks of tiny machines

With antennas made from conventional materials like copper, communication between low-power nanomachines would be virtually impossible. But by taking advantage of the unique electronic properties of the material known as graphene, researchers now believe they’re on track to connect devices powered by small amounts of scavenged energy.

Based on a honeycomb network of carbon atoms, graphene could generate a type of electronic surface wave that would allow antennas just one micron long and 10 to 100nm wide to do the work of much larger antennas. While operating graphene nano-antennas have yet to be demonstrated, the researchers say their modeling and simulations show that nano-networks using the new approach are feasible with the alternative material.

“We are exploiting the peculiar propagation of electrons in graphene to make a very small antenna that can radiate at much lower frequencies than classical metallic antennas of the same size,” said Ian Akyildiz, a Ken Byers Chair professor in Telecommunications in the School of Electrical and Computer Engineering at the Georgia Institute of Technology. “We believe that this is just the beginning of a new networking and communications paradigm based on the use of graphene.”

Tags: , , ,

Leave a Reply