Part of the  

Solid State Technology

  and   

The Confab

  Network

About  |  Contact

Posts Tagged ‘technology’

2D Materials May Be Brittle

Tuesday, November 15th, 2016

thumbnail

By Ed Korczynski, Sr. Technical Editor

International researchers using a novel in situ quantitative tensile testing platform have tested the uniform in-plane loading of freestanding membranes of 2D materials inside a scanning electron microscope (SEM). Led by materials researchers at Rice University, the in situ tensile testing reveals the brittle fracture of large-area molybdenum diselenide (MoSe2) crystals and measures their fracture strength for the first time. Borophene monolayers with a wavy topography are more flexible.

A communication to Advanced Materials online (DOI: 10.1002/adma.201604201) titled “Brittle Fracture of 2D MoSe2” by Yinchao Yang et al. disclosed work by researchers from the USA and China led by Department of Materials Science and NanoEngineering Professor Jun Lou at Rice University, Houston, Texas. His team found that MoSe2 is more brittle than expected, and that flaws as small as one missing atom can initiate catastrophic cracking under strain.

“It turns out not all 2D crystals are equal. Graphene is a lot more robust compared with some of the others we’re dealing with right now, like this molybdenum diselenide,” says Lou. “We think it has something to do with defects inherent to these materials. It’s very hard to detect them. Even if a cluster of vacancies makes a bigger hole, it’s difficult to find using any technique.” The team has posted a short animation online showing crack propagation.

2D Materials in a 3D World -222

While all real physical things in our world are inherently built as three-dimensional (3D) structures, a single layer of flat atoms approximates a two-dimensional (2D) structure. Except for special superconducting crystals frozen below the Curie temperature, when electrons flow through 3D materials there are always collisions which increase resistance and heat. However, certain single layers of crystals have atoms aligned such that electron transport is essentially confined within the 2D plane, and those electrons may move “ballistically” without being slowed by collisions.

MoSe2 is a dichalcogenide, a 2D semiconducting material that appears as a graphene-like hexagonal array from above but is actually a sandwich of Mo atoms between two layers of Se chalcogen atoms. MoSe2 is being considered for use as transistors and in next-generation solar cells, photodetectors, and catalysts as well as electronic and optical devices.

The Figure shows the micron-scale sample holder inside a SEM, where natural van der Waals forces held the sample in place on springy cantilever arms that measured the applied stress. Lead-author Yang is a postdoctoral researcher at Rice who developed a new dry-transfer process to exfoliate MoSe2 from the surface upon which it had been grown by chemical vapor deposition (CVD).

Custom built micron-scale mechanical jig used to test mechanical properties of nano-scale materials. (Source: Lou Group/Rice University)

The team measured the elastic modulus—the amount of stretching a material can handle and still return to its initial state—of MoSe2 at 177.2 (plus or minus 9.3) gigapascals (GPa). Graphene is more than five times as elastic. The fracture strength—amount of stretching a material can handle before breaking—was measured at 4.8 (plus or minus 2.9) GPa. Graphene is nearly 25 times stronger.

“The important message of this work is the brittle nature of these materials,” Lou says. “A lot of people are thinking about using 2D crystals because they’re inherently thin. They’re thinking about flexible electronics because they are semiconductors and their theoretical elastic strength should be very high. According to our calculations, they can be stretched up to 10 percent. The samples we have tested so far broke at 2 to 3 percent (of the theoretical maximum) at most.”

Borophene

“Wavy” borophene might be better, according to finding of other Rice University scientists. The Rice lab of theoretical physicist Boris Yakobson and experimental collaborators observed examples of naturally undulating metallic borophene—an atom-thick layer of boron—and suggested that transferring it onto an elastic surface would preserve the material’s stretchability along with its useful electronic properties.

Highly conductive graphene has promise for flexible electronics, but it is too stiff for devices that must repeatably bend, stretch, compress, or even twist. The Rice researchers found that borophene deposited on a silver substrate develops nanoscale corrugations, and due to weak binding to the silver can be exfoliated for transfer to a flexible surface. The research appeared recently in the American Chemical Society journal Nano Letters.

Rice University has been one of the world’s leading locations for the exploration of 1D and 2D materials research, ever since it was lucky enough to get a visionary genius like Richard Smalley to show up in 1976, so we should expect excellent work from people in their department of Materials Science and NanoEngineering (CSNE). Still, this ground-breaking work is being done in labs using tools capable of handling micron-scale substrates, so even after a metaphorical “path” has been found it will take a lot of work to build up a manufacturing roadway capable of fabricating meter-scale substrates.

—E.K.

Fab Facilities Data and Defectivity

Monday, August 1st, 2016

thumbnail

By Ed Korczynski, Sr. Technical Editor

In-the-know attendees at SEMICON West at a Thursday morning working breakfast heard from executives representing the world’s leading memory fabs discuss manufacturing challenges at the 4th annual Entegris Yield Forum. Among the excellent presenters was Norm Armour, managing director worldwide facilities and corporate EHSS of Micron. Armour has been responsible for some of the most famous fabs in the world, including the Malta, New York logic fab of GlobalFoundries, and AMD’s Fab25 in Austin, Texas. He discussed how facilities systems effect yield and parametric control in the fab.

Just recently, his organization within Micron broke records working with M&W on the new flagship Fab 10X in Singapore—now running 3D-NAND—by going from ground-breaking to first-tool-in in less than 12 months, followed by over 400 tools installed in 3 months. “The devil is in the details across the board, especially for 20nm and below,” declared Armour. “Fabs are delicate ecosystems. I’ll give a few examples from a high-volume fab of things that you would never expect to see, of component-level failures that caused major yield crashes.”

Ultra-Pure Water (UPW)

Ultra-Pure Water (UPW) is critical for IC fab processes including cleaning, etching, CMP, and immersion lithography, and contamination specs are now at the part-per-billion (ppb) or part-per-trillion (ppt) levels. Use of online monitoring is mandatory to mitigate risk of contamination. International Technology Roadmap for Semiconductors (ITRS) guidelines for UPW quality (minimum acceptable standard) include the following critical parameters:

  • Resistivity @ 25C >18.0 Mohm-cm,
  • TOC <1.0 ppb,
  • Particles/ml < 0.3 @ 0.05 um, and
  • Bacteria by culture 1000 ml <1.

In one case associated with a gate cleaning tool, elevated levels of zinc were detected with lots that had passed through one particular tool for a variation on a classic SC1 wet clean. High-purity chemistries were eliminated as sources based on analytical testing, so the root-cause analysis shifted to to the UPW system as a possible source. Then statistical analysis could show a positive correlation between UPW supply lines equipped with pressure regulators and the zinc exposure. The pressure regulator vendor confirmed use of zinc-oxide and zinc-stearate as part of the assembly process of the pressure regulator. “It was really a curing agent for an elastomer diaphragm that caused the contamination of multiple lots,” confided Armour.

UPW pressure regulators are just one of many components used in facilities builds that can significantly degrade fab yield. It is critical to implement a rigorous component testing and qualification process prior to component installation and widespread use. “Don’t take anything for granted,” advised Armour. “Things like UPW regulators have a first-order impact upon yield and they need to be characterized carefully, especially during new fab construction and fit up.”

Photoresist filtration

Photoresist filtration has always been important to ensure high yield in manufacturing, but it has become ultra-critical for lithography at the 20nm node and below. Dependable filtration is particularly important because industry lacks in-line monitoring technology capable of detecting particles in the range below ~40nm.

Micron tried using filters with 50nm pore diameters for a 20nm node process…and saw excessive yield losses along with extreme yield variability. “We characterized pressure-drop as a function of flow-rate, and looked at various filter performances for both 20nm and 40nm particles,” explained Armour. “We implemented a new filter, and lo and behold saw a step function increase in our yields. Defect densities dropped dramatically.” Tracking the yields over time showed that the variability was significantly reduced around the higher yield-entitlement level.

Airborne Molecular Contamination (AMC)

Airborne Molecular Contamination (AMC) is ‘public enemy number one’ in 20nm-node and below fabs around the world. “In one case there were forrest fires in Sumatra and the smoke was going into the atmosphere and actually went into our air intakes in a high volume fab in Taiwan thousands of miles away, and we saw a spike in hydrogen-sulfide,” confided Armour. “It increased our copper CMP defects, due to copper migration. After we installed higher-quality AMC filters for the make-up air units we saw dramatic improvement in copper defects. So what is most important is that you have real-time on-line monitoring of AMC levels.”

Building collaborative relationships with vendors is critical for troubleshooting component issues and improving component quality. “Partnering with suppliers like Entegris is absolutely essential,” continued Armour. “On AMCs for example, we have had a very close partnership that developed out of a team working together at our Inotera fab in Taiwan. There are thousands of important technologies that we need to leverage now to guarantee high yields in leading-node fabs.” The Figure shows just some of the AMCs that must be monitored in real-time.

Big Data

The only way to manage all of this complexity is with “Big Data” and in addition to primary process parameter that must be tracked there are many essential facilities inputs to analytics:

  • Environmental Parameters – temperature, humidity, pressure, particle count, AMCs, etc.
  • Equipment Parameters – run state, motor current, vibration, valve position, etc.
  • Effluent Parameters – cooling water, vacuum, UPW, chemicals, slurries, gases, etc.

“Conventional wisdom is that process tools create 90% of your defect density loss, but that’s changing toward facilities now,” said Armour. “So why not apply the same methodologies within facilities that we do in the fab?” SPC is after-the-fact reactive, while APC is real-time fault detection on input variables, including such parameters as vibration or flow-rate of a pump.

“Never enough data,” enthused Armour. “In terms of monitoring input variables, we do this through the PLCs and basically use SCADA to do the fault-detection interdiction on the critical input variables. This has been proven to be highly effective, providing a lot of protection, and letting me sleep better at night.”

Micron also uses these data to provide site-to-site comparisons. “We basically drive our laggard sites to meet our world-class sites in terms of reducing variation on facility input variables,” explained Armour. “We’re improving our forecasting as a result of this capability, and ultimately protecting our fab yields. Again, the last thing a fab manager wants to see is facilities causing yield loss and variation.”

—E.K.

79 GHz CMOS RADAR Chips for Cars from Imec and Infineon

Tuesday, May 24th, 2016

thumbnail

By Ed Korczynski, Sr. Technical Editor

As unveiled at the annual Imec Technology Forum in Brussels (itf2016.be), Infineon Technologies AG (infineon.com) and imec (imec.be) are working on highly integrated CMOS-based 79 GHz sensor chips for automotive radar applications. Imec provides expertise in high-frequency system, circuit, and antenna design for radar applications, complementing Infineon’s knowledge from the many learnings that go along with holding the world’s top market share in commercial radar sensor chips. Infineon and imec expect functional CMOS sensor chip samples in the third quarter of 2016. A complete radar system demonstrator is scheduled for the beginning of 2017.

Whether or not fully automated cars and trucks will be traveling on roads soon, today’s drivers want more sensors to be able to safely avoid accidents in conditions of limited visibility. Typically, there are up to three radar systems in today’s vehicle equipped with driver assistance functions. In a future with fully automated cars, up to ten radar systems and ten more sensor systems using cameras or lidar (https://en.wikipedia.org/wiki/Lidar) could be needed. Short-range radar (SRR) would look for side objects, medium-range radar (MRR) would scan widely for objects up to 50m in front and in back, and long-range radar (LRR) would focus up to 250m in front and in back for high-speed collision avoidance.

“Infineon enables the radar-based safety cocoon of the partly and fully automated car,” said Ralf Bornefeld, Vice President & General Manager, Sense & Control, Infineon Technologies AG. “In the future, we will manufacture radar sensor chips as a single-chip solution in a classic CMOS process for applications like automated parking. Infineon will continue to set industry standards in radar technology and quality.”

The Figure shows the evolution of radar technology over the last decades, leading to the current miniaturization using solid-state silicon CMOS. Key to the successful development of this 79 GHz demonstrator was choosing to use 28 nm CMOS technology. Imec has been refining this technology as shown at ISSCC (isscc.org) for many years, first showing a 28nm transmitter chip in 2013, then showing a 28nm transmit and receive (a.k.a. “transceiver”) chip in 2014, and finally showing a single-chip with a transceiver and analog-digital converters (ADC) and phase-lock loops (PLL) and digital components in 2015. Long-term supply of eventual commercial chips should be ensured by using 28nm technology, which is known as a “long lived” node.

“We are excited to work with Infineon as a valuable partner in our R&D program on advanced CMOS-based 77 GHz and 79 GHz radar technology,” stated Wim Van Thillo, program director perceptive systems at imec. “Compared to the mainstream 24 GHz band, the 77 GHz and 79 GHz bands enable a finer range, Doppler and angular resolution. With these advantages, we aim to realize radar prototypes with integrated multiple-input, multiple-output (MIMO) antennas that not only detect large objects, but also pedestrians and bikers and thus contribute to a safer environment for all.”

Since the aesthetics are always important for buyers, automobile companies have been challenged to integrate all of the desired sensors into vehicles in an invisible manner. “The designers hate what they call the ‘warts’ on car bumpers that are the small holes needed for the ultrasonic sensors currently used,” explained Van Thillo in a press conference during ITF2016.

In an ITF2016 presentation, CEO Reinhard Ploss, discussed how Infineon works with industrial partners to create competitive commercial products. “When we first developed RADAR, there was a collaboration between the Tier-1 car companies and ourselves,” explained Ploss. “The key lies in the algorithms needed to process the data, since the raw data stream is essentially useless. The next generation of differentiation for semiconductors will be how to integrate algorithms. In effect, how do you translate ‘pixels’ into ‘optics’ without an expensive microprocessor?”

Evolution of radar technology over time has reached the miniaturization of 79 GHz using 28nm silicon CMOS technology. Imec is now also working on 140 GHz radar chips. (Source: imec)

—E.K.

Leti’s CoolCube 3D Transistor Stacking Improves with Qualcomm Help

Wednesday, April 27th, 2016

By Ed Korczynski, Sr. Technical Editor

As previously covered by Solid State Technology CEA-Leti in France has been developing monolithic transistor stacking based on laser re-crystallization of active silicon in upper layers called “CoolCube” (TM). Leading mobile chip supplier Qualcomm has been working with Leti on CoolCube R&D since late 2013, and based on preliminary results have opted to continue collaborating with the goal of building a complete ecosystem that takes the technology from design to fabrication.

“The Qualcomm Technologies and Leti teams have demonstrated the potential of this technology for designing and fabricating high-density and high-performance chips for mobile devices,” said Karim Arabi, vice president of engineering, Qualcomm Technologies, Inc. “We are optimistic that this technology could address some of the technology scaling issues and this is why we are extending our collaboration with Leti.” As part of the collaboration, Qualcomm Technologies and Leti are sharing the technology through flexible, multi-party collaboration programs to accelerate adoption.

Olivier Faynot, micro-electronic component section manager of CEA-Leti, in an exclusive interview with Solid State Technology and SemiMD explained, “Today we have a strong focus on CMOS over CMOS integration, and this is the primary integration that we are pushing. What we see today is the integration of NMOS over PMOS is interesting and suitable for new material incorporation such as III-V and germanium.”

Table: Critical thermal budget steps summary in a planar FDSOI integration and CoolCube process for top FET in 3DVLSI. (Source: VLSI Symposium 2015)

The Table shows that CMOS over CMOS integration has met transistor performance goals with low-temperature processes, such that the top transistors have at least 90% of the performance compared to the bottom. Faynot says that recent results for transistors are meeting specification, while there is still work to be done on inter-tier metal connections. For advanced ICs there is a lot of interconnect routing congestion around the contacts and the metal-1 level, so inter-tier connection (formerly termed the more generic “local interconnect”) levels are needed to route some gates at the bottom level for connection to the top level.

“The main focus now is on the thermal budget for the integration of the inter-tier level,” explained Faynot. “To do this, we are not just working on the processing but also working closely with the designers. For example, depending on the material chosen for the metal inter-tier there will be different limits on the metal link lengths.” Tungsten is relatively more stable than copper, but with higher electrical resistance for inherently lower limits on line lengths. Additional details on such process-design co-dependencies will be disclosed during the 2016 VLSI Technology Symposium, chaired by Raj Jammy.

When the industry decides to integrate III-V and Ge alternate-channel materials in CMOS, the different processing conditions for each should make NMOS over PMOS CoolCube a relatively easy performance extension. “Three-fives and germanium are basically materials with low thermal budgets, so they would be most compatible with CoolCube processing,” reminded Faynot. “To me, this kind of technology would be very interesting for mobile applications, because it would achieve a circuit where the length of the wires would be shortened. We would expect to save in area, and have less of a trade-off between power-consumption and speed.”

“This is a new wave that CoolCube is creating and it has been possible thanks to the interest and support of Qualcomm Technologies, which is pushing the technological development in a good direction and sending a strong signal to the microelectronics community,” said Leti CEO Marie Semeria. “Together, we aim to build a complete ecosystem with foundries, equipment suppliers, and EDA and design houses to assemble all the pieces of the puzzle and move the technology into the product-qualification phase.”

—E.K.

Controlling Variabilities When Integrating IC Fab Materials

Friday, April 15th, 2016

thumbnail

By Ed Korczynski, Senior Technical Editor, SemiMD/Solid State Technology

Semiconductor integrated circuit (IC) manufacturing has always relied upon the supply of critical materials from a global supply chain. Now that shrinks of IC feature sizes have begun to reach economic limits, future functionality improvements in ICs are increasingly derived from the use of new materials. The Critical Materials Conference 2016—to be held May 5-6 in Hillsboro, Oregon (cmcfabs.org)—will explore best practices in the integration of novel materials into manufacturing. Dr. David Thompson, Senior Director, Center of Excellence in Chemistry, Applied Materials will present on “Agony in New Material Introductions – minimizing and correlating variabilities,” which he was willing to discuss in advance with SemiMD.

Korczynski: With more and more materials being considered for use in high-volume manufacturing (HVM) of advanced ICs, how do you begin to selectively screen out materials that will not work for one reason or another to be able to reach the best new material for a target application?

Thompson: While there’s ‘no one size fits all’ solution to this, it typically starts with a review of what’s available and known about the current offerings. With respect to the talk at the CMC, we’ll review the challenges we run into after the materials system and chemistries are set and have been proven generally viable, but still require significant optimization in order to get acceptable yields for manufacturing. It’s a very long road from device proof of concept on a new materials system to a viable manufacturing process.

Korczynski: Since new materials are being considered for use on the atomic-scale in advanced devices, doesn’t all of this have to be done with control at the atomic scale?

Thompson: For the material on the chip, many mainstream analytical techniques are used to achieve atomic level control including TEMs and AFMs with atomic resolution during film development for many applications. Unfortunately, this resolution is not available for the chemicals we’re relying on to deposit these materials. For a typical precursor that weighs in the 200 Dalton range, a gram of precursor may have 5 × 1020 molecules. That’s a lot of molecules. Even with ppb (109) resolutions on analytical, you’re still dealing with invisible populations of >1010 molecules. It gets worse. While trace metals analysis can hit ppb levels, molecular analysis techniques are typically limited in the 0.1 to 0.01 percent resolutions for most semiconductor precursors and there may be impurities which are invisible to routine analytical techniques.

Ultimately, we rely on analytical techniques to control the gross parameters and disciplined process controls to verify suppliers produce the same compositions the same way, and to manage impurities. On the process and hardware side, it’s like threading the needle trying to get the right film at the right throughput, in a process space that’s as tolerant as possible to the inevitable variability in these chemistries.

Korczynski: With all of this investment in developing one specialty material supplier for advanced IC manufacturing, what is the cost to develop and qualify a second source?

Thompson: Generally, it’s not sustainable to release a product with dual specialty material sources. The problem with dual-sourcing is chemical suppliers protect their knowledge—not simple IP—but also their sub-supply-chains and proprietary methods of production, transport and delivery. However, given how trace elements in the formulation can change depending on conditions the molecules experience over time, the customer in many cases needs to develop two separate sub-recipes based on the specific vendor’s chemistry they are using. So, redundancy in the supply chain is prudent as is making sure the vendor can produce the material in different locations.

There are countless examples over the last 20 years of what I like to call ‘the agony of the supply-chain’ when a process got locked into using a material when the only supply was from a Ph.D. chemist making it in small batches in a lab. In most cases the initial batch of any new molecule is made at a scale that would fit in a coffee mug. Sometimes though scaling up the first industrial-scale batch can alter impurity factors that change yields on the wafer even with improved purification. So while a customer would like to keep using a small batch production, it’s not sustainable but trying to qualify a second vendor in this environment presents significant challenges.

Korczynski: Can you share an example with us of how your team brought a source of subtle variation under control?

Thompson: We had a process using a new metal film, and in the early development everything looked great. Eventually we observed a drift of process results that was more pronounced with some ampoules and less so with others. The root cause initially eluded us. Then, a bright Ph.D. on our team said it’s interesting that the supplier did not report a particular contaminant that would tend to be present as a byproduct of the reaction. The supplier confirmed it was present and variable at concentrations in the 100-300 ppm concentration in the blend. This contaminant was relatively more volatile than the main component due to vapor pressure differences and much more reactive with the substrate/wafer. It was found this variability in the chemistry induced the process variation on the wafer (as shown in Figure 1).

FIGURE 1. RESOLUTION OF SEQUENTIAL WAFER DRIFT VIA IMPURITY MANAGEMENT

Chasing impurities and understanding their impact requires rigor and a lot of data collection. There’s no Star Trek analyzer we can use to give us knowledge of all impurities present and the role of those impurities on the process. Many impurities are invisible to routine analytical techniques, so we work very closely with vendors to establish a chemistry analytical protocol for each precursor that may consist of 5-10 different techniques. For the impurities we can’t detect we rely on excellent manufacturing process control and sub-supply sourcing management.

Korczynski: Is the supply-chain for advanced precursors for deposition and etch supplying everything we need in early R&D?

Thompson: New precursor ideation—the science that leads to new classes of compounds with new reactivity that Roy Gordon, or more recently Chuck Winter, have  been doing in academia is critically important and while there are a few academics doing excellent work in this space, in general there’s not enough focus on this topic.While we see many IP protected molecules, too often they are obvious simple modifications to one skilled in the art, consisting of merely adding a functional group off of a ring, or mixing and matching known ligand systems. We don’t see a lot of disruptive chemistries. The industry is hunting for differentiated reactivity, and evolutionary precursor development approaches generally aren’t sufficiently disruptive. While this research is useful in terms of tuning a vapor pressure or thermal stability it only very rarely produces a differentiated reactivity.

Korczynski: Do we need new methodologies to more efficiently manage all of this?

Thompson: Applied has made significant investments over the last 5 years to help accelerate the readiness of new materials across the board. One of the best things about working at Applied is the rate at which we can learn and build an ecosystem around a new material. With our strength in chemistry, deposition, CMP, etch, metrology and a host of other technologies, we get a fast, strong feedback loop going to accelerate issue discovery, resolution and general learning around new materials.

On the chemical supply-chain front, the need is making sure that chemical vendors accelerate their analytical chemistry development on new materials. Correlating the variability of chemistry to process results and ultimately yield is the real battle. The more knowledge we have of a chemistry moving into development, the faster learning can occur. I explain to my team that we can’t be proactive and respond to things we didn’t anticipate. Situations where trying to develop the analytical technique to see the impurity responsible for causing (or resolving) a variability is to start out at a significant disadvantage. However, we’ve seen a good response from suppliers on new materials and significant improvement on the early learnings necessary to minimize the agony of new material introductions.

Measuring 5nm Particles In-Line

Monday, November 30th, 2015

By Ed Korczynski, Sr. Technical Editor

Industrial Technology Research Institute (ITRI) (https://www.itri.org.tw/) worked with TSMC (http://www.tsmc.com) in Taiwan on a clever in-line monitor technology that transforms liquids and automatically-diluted-slurries into aerosols for subsequent airborn measurements. They call this “SuperSizer” technology, and claim that tests have shown resolution over the astounding range of 5nm to 1 micron, and with ability to accurately represent size distributions over that range. Any dissolved gas bubbles in the liquid are lost in the aerosol process, which allows the tool to unambiguously count solid impurities. The Figure shows the compact components within the tool that produce the aerosol.

Aerosol sub-system inside “SuperSizer” in-line particle sizing tool co-developed by ITRI/TSMC. (Source: ITRI)

Semiconductor fabrication (fab) lines require in-line measurement and control of particles in critical liquids and slurries. With the exception of those carefully added to chemical-mechanical planarization (CMP) slurries, most particles in fabs are accidental yield-killers that must be kept to an absolute minimum to ensure proper yield in IC fabs, and ever decreasing IC device feature sizes result in ever smaller particles that can kill a chip. Standard in-line tools to monitor particles rely on laser scattering through the liquid, and such technology allows for resolution of particle sizes as small as 40nm. Since we cannot control what we cannot measure, the IC fab industry needs this new ability to measure particles as small as 5nm for next-generation manufacturing.

There are two actual measurement technologies used downstream of the SuperSizer aerosol module:  a differential mobility analyzer (DMA), and a condensation particle counter (CPC). The aerosol first moves through the DMA column, where particle sizes are measured based on the force balance between air flow speed in the axial direction and an electric field in the radial direction. The subsequent CPC then provides particle concentration data.

Combining both data streams properly allows for automated output of information on particle sizes down to 5nm, size distributions, and impurity concentrations in liquids. Since the tool is intended for monitoring semiconductor high-volume manufacturing (HVM), the measurement data is automatically categorized, analyzed, and reported according to the needs of the fab’s automated yield management system. Users can edit the measurement sequences or recipes to monitor different chemicals or slurries under different conditions and schedules.

When used to control a CMP process, the SuperSizer can be configured to measure not just impurities but also the essential slurry particles themselves. During dilution and homogeneous mixing of the slurry prior to aerosolization, mechanical agitation needs to be avoided so as to prevent particle agglomeration which causes scratch defects. This new tool uses pressured gas as the driving force for solution transporting and mixing, so that any measured agglomeration in the slurry can be assigned to a source somewhere else in the fab.

TSMC has been using this tool since 2014 to measure particles in solutions including slurries, chemicals, and ultra-pure water. ITRI, which owns the technology and related patents, can now take orders to manufacture the product, but the research organization plans to license the technology to a company in Taiwan for volume manufacturing. EETimes reports (http://www.eetimes.com/document.asp?doc_id=1328283) that the current list price for a tool capable of monitoring ultra-pure water is ~US$450k, while a fully-configured tool for CMP monitoring would cost over US$700k.

—E.K.

Knowm First to Deliver Configurable Artificial Neural Networks using Bi-Directional Learning Memristors

Wednesday, September 2nd, 2015

thumbnail

By Ed Korczynski, Sr. Technical Editor

Knowm Inc., a start-up pioneering next-generation advanced computing architectures and technology, today announced the availability of artificial neural-network (ANN) chips built using memristors with bi-directional incremental learning capability. “We have been dreaming about this device and developing the theory for how to apply them to best maximize their potential for more than a decade,” said Alex Nugent, CEO and co-founder of Knowm. “The problem I set out to solve in 2001 was the massive discrepancy between how computers model brains and how neurons function. This result is truly a monumental technical milestone.”

Memristors with the bi-directional incremental resistance change property are the foundation for developing ANN such as Knowm’s recently announced Thermodynamic RAM (kT-RAM). Intended for high computing power jobs like machine learning (ML), autonomous robotics, and intelligent internet assistants, kT-RAM radically increases the efficiency of synaptic integration and adaptation operations such as pattern recognition and inference. The company has released an API for organizations and individual developers.

The Figure shows how Knowm’s architecture is adaptive, and based on the principle of Anti-Hebbian and Hebbian (AHaH) learning in neurons—following Hebb’s famous observation that “neurons that fire together wire together.” Hebbian learning reduces the synaptic resistance, while anti-Hebbian learning increases the resistance. The adaptive architecture means that thousands of memristors could be connected in parallel to do large-scale pattern recognition, or individual memristors could be mapped into a decision-tree to produce combinatorial optimization.

New “thermodynamic RAM” (kT-RAM) artificial neural network (ANN) architecture from Knowm is inherent adaptive, and built with memristors capable of bi-directional incremental resistance changes for efficient learning. (Source: Knowm)

The most famous ANN chip had been True North, but IBM could not develop memristors technology so that chip uses a fixed architecture with digital SRAM transistor arrays. The use of SRAM arrays means that True North chips require 21 pJ energy per synaptic integration, while Knowm’s memristor arrays can perform the same function with less than a thousandth of the energy (1-10 fJ).

Since the principle of Hebbian-learning is well known, many R&D teams around the world have tried and failed to find a material stack that allows for controlled incremental increase and decrease in resistance. An ideal memristor with the following properties would allow a single 2-terminal device to provide both Anti-Hebbian and Hebbian learning in artificial synapses:

  • BEOL CMOS compatible fabrication,
  • Voltage dependent  and low voltage thresholds of adaptation,
  • Non-Volatile with high cycle endurance,
  • Resistance ranges from ~100kΩ to ~100MΩ, and
  • Bi-directional incremental changes in resistance.

Fortunately, Dr. Kris Campbell of Boise State University had been researching the electronic properties of chalcogenide compounds, and her group was able to find the right material. Working with Knowm on this patent-pending technology, Campbell can create memristors that adjust resistance in incremental steps in both directions, instead of being limited to incremental change in only one direction alternating with a non-incremental “re-set” step. Using voltage pulses nominally 100 ns allows for learning (though shorter pulse lengths also work) using 0.6V to decrease resistance or -0.3V to increase resistance, and then a 20 mV pulse can easily read the learning level. The memristor stack of materials—including a silver layer as source of ions to diffuse through and alter the resistance of the calchogenide layer (still secret)—is only a few tens of nanometers thick, and can be formed in a single physical-vapor deposition (PVD) chamber in a time-scale of minutes.

Knowm has cycled these memristors billions of times, so reliability has been shown and the company is confident that it now has the building blocks in place for the creation of powerful and efficient ANN chips. “This is a low-level resource for adaptive learning,” explained Nugent to Solid State Technology. “It’s important to say that we’re not trying to do what others are doing with digital non-volatile memory. What we started out to do is to use memristors as synaptic connectors.” Earlier this year, Knowm announced the commercial availability of the first kT-RAM products:  discrete memristor chips, a Back End of Line (BEOL) CMOS+memristor service at Boise State, and the first “Knowm Anomaly” application.

Non-Volatile Memory (NVM) using memristors in cross-point arrays for digital Resistance RAM (ReRAM) has been pursued by many companies for many years. While there are inherent specification differences between digital NVM and analog ANN, in general it is more difficult to meet the device requirements for ANN. “In terms of the NVM, I feel pretty good about it already,” said Campbell to Solid State Technology. “Work I had been doing with Air Force Research Lab starting in about 2008 had been studying NVM and cross-point arrays.”

Solid State Watch: February 27-March 5, 2015

Friday, March 6th, 2015
YouTube Preview Image