Part of the  

Solid State Technology


The Confab


About  |  Contact

Posts Tagged ‘stepper’

Edge Placement Error Control in Multi-Patterning

Thursday, March 2nd, 2017


By Ed Korczynski, Sr. Technical Editor

SPIE Advanced Lithography remains the technical conference where the leading edge of minimum resolution patterning is explored, even though photolithography is now only part of the story. Leading OEMs continue to impress the industry with more productive ArFi steppers, but the photoresist suppliers and the purveyors of vacuum deposition and etch tools now provide most of the new value-add. Tri-layer-resist (TLR) stacks, specialty hard-masks and anti-reflective coatings (ARC), and complex thin-film depositions and etches all combine to create application-specific lithography solutions tuned to each critical mask.

Multi-patterning using complementary lithography—using argon-fluoride immersion (ArFi) steppers to pattern 1D line arrays plus extreme ultra-violet (EUV) tools to do line cuts—is under development at all leading edge fabs today. Figure 1 shows that edge placement error (EPE) in lines, cut layers, and vias/contacts between two orthogonal patterned layers can result in shorts and opens. Consequently, EPE control is critical for yield within any multi-patterning process flow, including litho-etch-litho-etch (LELE), self-aligned double-patterning (SADP) and self-aligned quadruple-patterning (SAQP).

Fig.1: Plan view schematic of 10nm half-pitch vertical lines overlaid with lower horizontal lines, showing the potential for edge-placement error (EPE). (Source: Y. Borodovsky, SPIE)

Happening the day before the official start of SPIE-AL, Nikon’s LithoVision event featured a talk by Intel Fellow and director of lithography hardware solutions Mark Phillips on the big picture of how the industry may continue to pattern smaller IC device features. Regarding the timing of Intel’s planned use of EUV litho technology, Phillips re-iterated that, “It’s highly desirable for the 7nm node, but we’ll only use it when it’s ready. However, EUVL will remain expensive even at full productivity, so 193i and multi-patterning will continue to be used. In particular we’ll need continued improvement in the 193i tools to meet overlay.”

Yuichi Shibazaki— Nikon Fellow and the main architect of the current generation of Nikon steppers—explained that the current generation of 193i steppers, featuring throughputs of >200 wafers per hour, have already been optimized to the point of diminishing returns. “In order to improve a small amount of performance it requires a lot of expense. So just improving tool performance may not decrease chip costs.” Nikon’s latest productivity offering is a converted alignment station as a stand-alone tool, intended to measure every product wafer before lithography to allow for feed-forward tuning of any stepper; cost and cost-of-ownership may be disclosed after the first beta-site tool reaches a customer by the end of this year.

“The 193 immersion technology continues to make steady progress, but there are not as many new game-changing developments,” confided Michael Lercel, Director of Strategic Marketing for ASML in an exclusive interview with SemiMD. “A major theme of several SPIE papers is on EPE, which traditionally we looked at as dependent upon CD and overlay. Now we’re looking at EPE in patterning more holistically, with need to control the complexity with different error-variables. The more information we can get the more we can control.”

At LithoVision this year, John Sturtevant—SPIE Fellow, and director of RET product development in the Design to Silicon Division at Mentor Graphics—discussed the challenges of controlling variability in multi-layer patterning. “A key challenge is predicting and then mitigating total EPE control,” reminded Sturtevant. “We’ve always paid attention to it, but the budgets that are available today are smaller than ever. Edge-placement is very important ” At the leading edge, there are multiple steps within the basic litho flow that induce proximity/local-neighbor effects which must be accounted for in EDA:  mask making, photoresist exposure, post-exposure bake (PEB), pattern development, and CD-SEM inspection (wherein there is non-zero resist shrinkage).

Due to the inherent physics of EUV lithography, as well as the atomic-scale non-uniformities in the reflective mirrors focusing onto the wafer, EUV exposure tools show significant variation in exposure uniformities. “For any given slit position there can be significant differences between tools. In practice we have used a single model of OPC for all slit locations in all scanners in the fab, and that paradigm may have to change,” said Sturtevant. “It’s possible that because the variation across the scanner is as much as the variation across the slit, it could mean we’ll need scanner-specific cross-slit computational lithography.” More than 3nm variation has been seen across 4 EUVL steppers, and the possible need for tool-specific optical proximity correction (OPC) and source-mask optimization (SMO) would be horrible for managing masks in HVM.

Thin Films Extend Patterning Resolution

Applied Materials has led the industry in thin-film depositions and etches for decades, and the company’s production proven processing platforms are being used more and more to extend the resolution of lithography. For SADP and SAQP MP, there are tunable unit-processes established for sidewall-spacer depositions, and chemical downstream etching chambers for mandrel pull with extreme material selectivity. CVD of dielectric and metallic hard-masks when combined with highly anisotropic plasma etching allows for device-specific and mask-specific pattern transfers that can reduce the line width/edge roughness (LWR/LER) originally present in the photoresist. Figure 2 from the SPIE-AL presentation “Impact of Materials Engineering on Edge Placement Error” by Regina Freed, Ying Zhang, and Uday Mitra of Applied Materials, shows LER reduction from 3.4 to 1.3 nm is possible after etch. The company’s Sym3 chamber features very high gas conductance to prevent etch byproducts from dissociation and re-deposition on resist sidewalls.

Fig.2: 3D schematics (top) and plan view SEM images (bottom) showing that control of plasma parameters can tune the byproducts of etch processes to significantly reduce the line-width roughness (LWR) of minimally scaled lines. (Source: Applied Materials)

TEL’s new SAQP spacer-on-spacer process builds on the work shown last year, using oxide as first spacer and TiO2 as second spacer. Now TEL is exploring silicon as the mandrel, then silicon-nitride as the first spacer, and titanium-oxide as second spacer. This new flow can be tuned so that all-dry etch in a single plasma etch chamber can be used for the final mandrel pull and pattern transfer steps.

Coventor’s 3D modeling software allows companies to do process integration experiments in virtual space, allowing for estimation of yield-losses in pattern transfer due to variations in side-wall profiles and LER. A simulation of 9 SRAM cells with 54 transistors shows that photoresist sidewall taper angle determines both the size and the variability of the final fins. The final capacitance of low-k dielectric in dual-damascene copper metal interconnects can be simulated as a function of the initial photoresist profile in a SAQP flow.


High-NA EUV Lithography Investment

Monday, November 28th, 2016


By Ed Korczynski, Sr. Technical Editor

As covered in a recent press release, leading lithography OEM ASML invested EUR 1 billion in cash to buy 24.9% of ZEISS subsidiary Carl Zeiss SMT, and committed to spend EUR ~760 million over the next 6 years on capital expenditures and R&D of an entirely new high numerical aperture (NA) extreme ultra-violet (EUV) lithography tool. Targeting NA >0.5 to be able to print 8 nm half-pitch features, the planned tool will use anamorphic mirrors to reduce shadowing effects from nanometer-scale mask patterns. Clever design and engineering of the mirrors could allow this new NA >0.5 tool to be able to achieve wafer throughputs similar to ASML’s current generation of 0.33 NA tools for the same source power and resist speed.

The Numerical Aperture (NA) of an optical system is a dimensionless number that characterizes the range of angles over which the system can accept or emit light. Higher NA systems can resolve finer features by condensing light from a wider range of angles. Mirror surfaces to reflect EUV “light” are made from over 50 atomic-scale bi-layers of molybdenum (Mo) and silicon (Si), and increasing the width of mirrors to reach higher NA increases the angular spread of the light which results in shadows within patterns.

In the proceedings of last year’s European Mask and Lithography Conference, Zeiss researchers reported on  “Anamorphic high NA optics enabling EUV lithography with sub 8 nm resolution” (doi:10.1117/12.2196393). The abstract summarizes the inherent challenges of establishing high NA EUVL technology:

For such a high-NA optics a configuration of 4x magnification, full field size of 26 x 33 mm² and 6’’ mask is not feasible anymore. The increased chief ray angle and higher NA at reticle lead to non-acceptable mask shadowing effects. These shadowing effects can only be controlled by increasing the magnification, hence reducing the system productivity or demanding larger mask sizes. We demonstrate that the best compromise in imaging, productivity and field split is a so-called anamorphic magnification and a half field of 26 x 16.5 mm² but utilizing existing 6’’ mask infrastructure.

Figure 1 shows that ASML plans to introduce such a system after the year 2020, with a throughput of 185 wafers-per-hour (wph) and with overlay of <2 nm. Hans Meiling, ASML vice president of product management EUV, in an exclusive interview with Solid State Technology explained why >0.5 NA capability will not be upgradable on 0.33 NA tools, “the >0.5NA optical path is larger and will require a new platform. The anamorphic imaging will also require stage architectural changes.”

Fig.1: EUVL stepper product plans for wafers per hour (WPH) and overlay accuracy include change from 0.33 NA to a new >0.5 NA platform. (Source: ASML)

Overlay of <2 nm will be critical when patterning 8nm half-pitch features, particularly when stitching lines together between half-fields patterned by single-exposures of EUV. Minimal overlay is also needed for EUV to be used to cut grid lines that are initially formed by pitch-splitting ArFi. In addition to the high NA set of mirrors, engineers will have to improve many parts of the stepper to be able to improve on the 3 nm overlay capability promised for the NXE:3400B 0.33 NA tool ASML plans to ship next year.

“Achieving better overlay requires improvements in wafer and reticle stages regardless of NA,” explained Meiling. “The optics are one of the many components that contribute to overlay. Compare to ArF immersion lithography, where the optics NA has been at 1.35 for several generations but platform improvements have provided significant overlay improvements.”

Manufacturing Capability Plans

Figure 2 shows that anamorphic systems require anamorphic masks, so moving from 0.33 to >0.5 NA requires re-designed masks. For relatively large chips, two adjacent exposures with two different anamorphic masks will be needed to pattern the same field area which could be imaged with lower resolution by a single 0.33 NA exposure. Obviously, such adjacent exposures of one layer must be properly “stitched” together by design, which is another constraint on electronic design automation (EDA) software.

Fig.2: Anamorphic >0.5 NA EUVL system planned by ASML and Zeiss will magnify mask images by 4x in the x-direction and 8x in the y-direction. (Source: Carl Zeiss SMT)

Though large chips will require twice as many half-field masks, use of anamorphic imaging somewhat reduces the challenges of mask-making. Meiling reminds us that, “With the anamorphic imaging, the 8X direction conditions will actually relax, while the 4X direction will require incremental improvements such as have always been required node-on-node.”

ASML and Zeiss report that ideal holes which “obscure” the centers of mirrors can surprisingly allow for increased transmission of EUV by each mirror, up to twice that of the “unobscured” mirrors in the 0.33 NA tool. The holes allow the mirrors to reflect through each-other, so they all line up and reflect better. Theoretically then each >0.5 NA half-field can be exposed twice as fast as a 0.33 NA full-field, though it seems that some system throughput loss will be inevitable. Twice the number of steps across the wafer will have to slow down throughput by some percent.

White two stitched side-by-side >0.5 NA EUVL exposures will be challenging, the generally known alternatives seem likely to provide only lower throughputs and lower yields:

*   Double-exposure of full-field using 0.33 NA EUVL,

*   Octuple-exposure of full-field using ArFi, or

*   Quadruple-exposure of full-field using ArFi complemented by e-beam direct-writing (EbDW) or by directed self-assembly (DSA).

One ASML EUVL system for HVM is expected to cost ~US$100 million. As presented at the company’s October 31st Investor Day this year, ASML’s modeling indicates that a leading-edge logic fab running ~45k wafer starts per month (WSPM) would need to purchase 7-12 EUV systems to handle an anticipated 6-10 EUV layers within “7nm-node” designs. Assuming that each tool will cost >US$100 million, a leading logic fab would have to invest ~US$1 billion to be able to use EUV for critical lithography layers.

With near US$1 billion in capital investments needed to begin using EUVL, HVM fabs want to be able to get productive value out of the tools over more than a single IC product generation. If a logic fab invests US$1 billion to use 0.33 NA EUVL for the “7nm-node” there is risk that those tools will be unproductive for “5nm-node” designs expected a few years later. Some fabs may choose to push ArFi multi-patterning complemented by another lithography technology for a few years, and delay investment in EUVL until >0.5 NA tools become available.