Part of the  

Solid State Technology

  and   

The Confab

  Network

About  |  Contact

Posts Tagged ‘SMIC’

What is Your China Strategy?

Wednesday, September 7th, 2016

thumbnail

By Dave Lammers, Contributing Editor

Equipment vendors have a lot on their plates now, with memory customers pushing 3D NAND, foundries advancing to the 7 nm node, and 200mm fabs clamoring to come up with hard-to-find tools.

China, which has renewed its investments in displays, packaging, and both 200mm and 300mm front-end fab capacity, is another challenge.

“All the managers in my company are scrambling to adjust their budgets so they can support China. I can tell you people are booking lots of flights to Shanghai,” said one engineer at a major equipment supplier.

Bill McClean, president of IC Insights (Scottsdale, AZ), said China is fast becoming a center for 3D NAND production, as several companies expand production in China. Intel is converting its Dalian, China fab partly to 3D NAND, and Toshiba might very well make a deal in China to build a 3D NAND fab there, he said.

“China could be the 3D NAND capital of the world,” McClean said at The ConFab conference in Las Vegas. While the U.S. government limits exports of leading-edge technologies on national security concerns, 3D NAND relies more on overlay and etch techniques at relaxed (40nm) design rules, he noted.

“Since the 3D NAND makers are not pushing feature sizes, it doesn’t raise red flags like if Chinese companies wanted FinFET technology. That is when the alarms go off,” McClean said.

However, McClean said the 3D NAND market is not immune to the oversupply issues that now face the DRAM makers. “I’ve seen this rodeo before,” McClean said.

China’s domestic IC market is slightly more than $100 billion, McClean said, while chip production in China was about $13 billion last year, representing just under 5 percent of worldwide production (Figure 1).

Figure 1. Source: IC Insights.

The difference between consumption and domestic production, referred to as the delta, is made up by imports. “This 13 percent (from domestic suppliers) drives the Chinese government crazy. Yes, they will close that gap a little bit, but not to the extent that they think,” McClean told The ConFab audience in mid-June.

Robert Maire, who consulted for SMIC on its initial public offering in the United States, spoke at length about China at the SEMI Advanced Semiconductor Manufacturing Conference (ASMC) in Saratoga Springs, N.Y. Amid the mergers and acquisition frenzy of last year, China managed to pull off the acquisitions of CMOS image sensor vendor Omnivision, memory maker ISSI, the RF business of NXP, Pericom Semiconductor, and Mattson Technology. (McClean said he believes that if the Omnivision acquisition were attempted in today’s more China-wary environment that Washington would block the deal).

Maire, principal at Semiconductor Advisors (New York), said China is far behind in its domestic semiconductor production equipment business. “If China has 14nm production capacity, but buys all of its equipment from abroad, it doesn’t really help them that much. China is getting started in equipment, but it has a lot of catching up to do.”

Scott Foster, a partner in market intelligence firm TAP Japan (Tokyo), said China must have an international scope in the equipment sector if it hopes to compete with the likes of Applied, Lam, and other well-established vendors. A few of Japan’s equipment suppliers are succeeding while operating in relatively narrow niches, but overall, competing globally is a challenge for mid-sized Japanese equipment companies. “If this is what is happening to Japanese equipment vendors, what chance do Chinese companies have?” Foster said.

Packaging may prove to be key

Skeptics of China’s prospects might take a long look at China’s success in packaging, an area where China is succeeding, in part by acquisitions of Asia-based companies, notably STATS ChipPAC (Singapore), which was acquired by Jiangsu Changjiang Electronics Technology Co. (JCET) last year. Separately, SMIC and JCET formed a joint venture to focus on chip scale packaging, wafer bumping, and fan-out wafer level packaging. The packaging joint venture is located 90 minutes from Shanghai, said Sonny Hui, senior vice president of worldwide marketing at SMIC.

Jim Walker, the packaging analyst at market research firm Gartner, said China-based packaging is now valued at nearly half (43 percent) of all worldwide packaging value by IDMs and OSATs. While the packaging industry overall is dealing with price pressures, the advent of wafer level packaging, and other forms of multi-chip integration, bodes well for the higher end of the back-end industry.

“As the semiconductor industry matures and Moore’s Law scaling slows, multi-chip integration via packaging is providing system vendors with a faster time-to-market, and a lower-cost means, of solving system-level challenges,” Walker said.

Packaging multiple chips in a module is likely to play a key role in the Internet of Things (IoT) markets, Walker said. Automotive, medical, home, and consumer solutions are all “heavily reliant on packaging,” he said.

Sam Wang, a Gartner analyst who focuses on foundries, pointed out at Semicon West that China’s semiconductor industry faces continued challenges in a hotly contested foundry market. Few China-based foundries have enjoyed the strong growth that SMIC has demonstrated, he said. (SMIC has been “running at very high utilizations, and we are working very hard to solve the problem,” said SMIC’s Hui.)

While SMIC has enjoyed double-digit growth for several years, the five second-tier Chinese foundries – — Shanghai Huahong Grace, CSMC, HuaLi, XMC, and ASMC — saw declining revenues year-over-year in 2015. Overall, China-based foundries accounted for just 7.8 percent of total worldwide foundry capacity last year, and the overall growth rate by Chinese foundries “is way below the expectations of the Chinese government,” Wang said.

China-based companies are focusing partly on MEMS and other devices made on 200mm wafers, including analog, sensors, and power. SMIC’s Hui said “most of our customers don’t see much benefit to migrate to 12-inch. 200mm still has a lot of potential; just consider the hundreds of products still made on 180nm technology, which was developed 20 years ago. Many customers still see that as a sweet spot.”

Foster, who has three decades of tech-watching experience from his base in Tokyo, said the 200mm wafer fabs being built in China will make products that “do not need the gigantic scale” required of Intel, TSMC, Samsung and Toshiba. Figure 2, courtesy of SEMI, shows the seventeen 200mm wafer fabs/lines that are expected begin operation in 2015 to 2019. Six of the seventeen will be in China.

Figure 2. Source: SEMI

“After decades of trying, China has found a market-based strategy: building scale and experience from the bottom up. In the long run, this is likely to be far more effective than going out to buy foreign companies,” Foster said.

Display is another area China is counting on. In an Aug. 18 conference call following a strong quarter, Applied Materials chief financial officer Bob Halliday told analysts: “In display, we recorded record orders of $803 million with more than half coming from projects in China.”

The Applied CFO also said, “Just listening to the Chinese government, they’re in this for a long-term and their interest in investing in the semiconductor industry is probably only going to increase.”

Kateeva turns to China funds

China is often lumped together with other Asian nations as a country that has a government-led, me-too, follower mentality. But increasingly, China is either proving innovative itself, or able to quickly adopt innovations from the West.

At the Innovation Forum at Semicon West, Conor Madigan, co-founder of ink jet printer startup Kateeva (Newark, Calif.) spoke about the readiness of Chinese venture capital funds to step in where Silicon Valley-based VCs were overly hesitant. China proved a more receptive place to raise money than the United States, though the early establishment of the M.I.T. spinout did come from U.S. based sources.

After its initial development effort, Kateeva figured it needed more than $100 million to accomplish its goals. After making the rounds to raise funds in the United States without success, Kateeva turned to China, where five different funds eventually became investors.

Asked why Chinese investors were willing to back Kateeva when funds in the United States and other Asian countries were reluctant, Madigan pointed to a confluence of factors.

The Chinese government had identified OLED displays as a focus of its Five Year Plan. The follow-on economic plan further identified inkjet technology as a critical technology. Investors in China favor companies which can provide the equipment for products, such as OLEDs, which have the government’s blessing and financial support. That government support reduced the investment risks in ways that are not readily seen in Japan or the United States, he said.

Madigan had studied OLEDs as an undergraduate at Princeton University, and then studied under an M.I.T. professor who had developed ink jet technology for large formats.

Though an early goal was to use large-format inkjet to deposit the RGB materials in OLEDs, the Kateeva team learned that its YieldJet system could be adapted to solve a more urgent problem: thin film encapsulation (TFE). It “pivoted” on the advice of an early customer, which fortunately already had developed the “ink” which under UV light would form a uniform encapsulation layer for the large OLED substrates required for TVs and other large display applications.

Two display companies in China identified Kateeva as a strategic partner, which allowed Kateeva to raise money from private Chinese VC funds, rather than taking money from regional government funds which might have asked Kateeva to locate its manufacturing operations in their local area.

Madigan also pointed to the tendency of U.S.-based venture capital funds to favor software companies over manufacturing-focused opportunities. As VCs make money in software-related startups, the funds gradually have more partners and investors which favor software because that is what they are familiar with.

VC fund managers with backgrounds in software “want to invest in the space that they understand. In the United States, that often means software, because you pick companies in the space that you understand.”

Solid State Watch: June 27-July 3, 2014

Monday, July 7th, 2014
YouTube Preview Image

Solid State Watch: May 16-22, 2014

Friday, May 23rd, 2014
YouTube Preview Image

Research Alert: May 20, 2014

Tuesday, May 20th, 2014

Lighting the way to graphene-based devices

Researchers with Berkeley Lab and the University of California (UC) Berkeley have demonstrated a technique whereby the electronic properties of GBN heterostructures can be modified with visible light. Feng Wang, a condensed matter physicist with Berkeley Lab’s Materials Sciences Division and UC Berkeley’s Physics Department, as well as an investigator for the Kavli Energy NanoSciences Institute at Berkeley, led a study in which photo-induced doping of GBN heterostructures was used to create p–n junctions and other useful doping profiles while preserving the material’s remarkably high electron mobility.

“We’ve demonstrated that visible light can induce a robust writing and erasing of charge-doping in GBN heterostructures without sacrificing high carrier mobility,” Wang says. “The use of visible light gives us incredible flexibility and, unlike electrostatic gating and chemical doping, does not require multi-step fabrication processes that reduce sample quality. Additionally, different patterns can be imparted and erased at will, which was not possible with doping techniques previously used on GBN heterostructures.”

“We’ve shown show that this photo-induced doping arises from microscopically coupled optical and electrical responses in the GBN heterostructures, including optical excitation of defect transitions in boron nitride, electrical transport in graphene, and charge transfer between boron nitride and graphene,” Wang says. “This is analogous to the modulation doping first developed for high-quality semiconductors.”

While the photo-induced modulation doping of GBN heterostructures only lasted a few days if the sample was kept in darkness – further exposure to light erased the effect – this is not a concern as Wang explains.

“A few days of modulation doping are sufficient for many avenues of scientific inquiry, and for some device applications, the rewritability we can provide is needed more than long term stability,” he says. “For the moment, what we have is a simple technique for inhomogeneous doping in a high-mobility graphene material that opens the door to novel scientific studies and applications.”

SMIC and other groups collaborate to setup the “IC Advanced Technology Research Institute”

China’s largest and most advanced semiconductor foundry this week announced that SMIC, Wuhan Xinxin, Tsinghua University, Beijing University, Fudan University and the Chinese Academy of Sciences and Microelectronics have collaborated to setup the “IC Advanced Technology Research Institute” to create the most advanced IC technology research and development institution in China.

Currently, the research institute will focus on the mainstream 20nm and below technologies for research and development which includes advanced logic technology, advanced non-volatile memory technology, verification of domestic equipment and materials, and related IP qualifications etc. It will also follow up with the industry’s technology development and the actual needs of the customers, and will invite design, equipment, material companies, and upstream and downstream industries. They can join in as a member or in project collaboration. This institute will strengthen its international exchange and cooperation, to promote the establishment our IP infrastructure, to speed up the cultivation of patents and talent, in order to raise the core competitiveness of innovation in China’s IC industry.

On Solid State Technology: What to look for at IITC

Are you at IITC this week? Here’s a look at the key presentations being given and topics being covered all week at the 17th annual IITC/AMC conference in San Jose, California.

Solid State Watch: March 14-20, 2014

Monday, March 24th, 2014
YouTube Preview Image

The Week in Review: March 21, 2014

Friday, March 21st, 2014

Research from University of California, Berkeley scientists sponsored by Semiconductor Research Corporation (SRC) promises to revolutionize portable radio frequency (RF) electronics and communication systems via advancements in on-chip inductors by leveraging embedded nanomagnets. The UC Berkeley research focuses on using insulated nano-composite magnetic materials as the filling material to shrink the size and improve the performance of high frequency on-chip inductors, thereby enabling a new wave of miniaturized electronics and wireless communications devices.

North America-based manufacturers of semiconductor equipment posted $1.29 billion in orders worldwide in February 2014 (three-month average basis) and a book-to-bill ratio of 1.00, according to the February EMDS Book-to-Bill Report published today by SEMI.   A book-to-bill of 1.00 means that $100 worth of orders were received for every $100 of product billed for the month.

Dr. Tzu-Yin Chiu, Chief Executive Officer & Executive Director of SMIC presented the SEMICON China 2014 opening keynote yesterday and was given a SEMI Outstanding EHS Achievement Award.

EV Group (EVG), a supplier of wafer bonding and lithography equipment for the MEMS, nanotechnology and semiconductor markets, today announced that it has opened a new, wholly owned subsidiary in Shanghai, called EV Group China Ltd., which will serve as regional headquarters for all of EVG’s operations in China.  The new subsidiary, which houses a local service center and spare parts management facility, will further strengthen EVG’s presence in the region and support the company’s ongoing efforts to improve service and response times to local customers.

ChaoLogix, Inc., a semiconductor technology provider focused on developing embedded security and low-power design intellectual property, today introduced ChaoSecure technology that deters side channel attacks on semiconductor chips and contributes a superior layer of security compared to existing solutions. ChaoLogix’s ChaoSecure technology is a hardware-based solution designed to provide optimal performance at the nexus of security and power. Proven in silicon and validated by an independent security lab, ChaoSecure is a secure standard cell library that can be easily integrated into an existing integrated circuit (IC) — making it the ideal security solution in terms of cost and performance for designing complex applications ranging from smart cards to smart phones.

Applied Materials, Inc. this week announced that it was named a 2014 World’s Most Ethical Company by the Ethisphere Institute, an independent center of research promoting best practices in corporate ethics and governance. This is the third consecutive year Applied Materials has received the annual award, which recognizes organizations that continue to demonstrate ethical leadership and corporate behavior.

The Week in Review: Jan. 31, 2014

Friday, January 31st, 2014

The Obama Administration this week announced the selection of North Carolina State University to lead a public-private manufacturing innovation institute for next generation power electronics. Called the Next Generation Power Electronics Institute, the new consortium will provide shared facilities, equipment and testing to companies from the power electronics industry, focusing on small and medium-sized companies. The 18 companies already committed to the consortium include: ABB, APEI, Avogy, Cree, Delphi, Delta Products, DfR Solutions, Gridbridge, Hesse Mechantronics, II-VI, IQE, John Deere, Monolith Semiconductor, RF Micro Devices, Toshiba International, Transphorm, USCi and Vacon. The institute, backed by a $70 million investment from the Department of Energy, will focus on power electronics using wide bandgap (WBG) semiconductors, bringing together over 25 companies, universities and state and federal organizations.

Semiconductor Manufacturing International Corporation, China’s largest and most advanced semiconductor foundry, announced today that its 28nm technology has been process frozen and the company has successfully entered Multi Project Wafer (MPW) stage to support customer’s requirements on both 28nm PolySiON (PS) and 28nm high-k dielectrics metal gate (HKMG) processes. Over 100 IPs from multiple third party IP partners as well as SMIC’s internal IP team are prepared to serve various projects from worldwide design houses that have been showing interest in SMIC 28nm processes.

Researchers with the Lawrence Berkeley National Laboratory have developed a process-friendly technique that would enable the cooling of microprocessor chips through carbon nanotubes. Frank Ogletree, a physicist with Berkeley Lab’s Materials Sciences Division, led a study in which organic molecules were used to form strong covalent bonds between carbon nanotubes and metal surfaces. This improved by six-fold the flow of heat from the metal to the carbon nanotubes, paving the way for faster, more efficient cooling of computer chips. The technique is done through gas vapor or liquid chemistry at low temperatures, making it suitable for the manufacturing of computer chips.

With Korea expected to be the second largest region for fab construction spending in 2014, industry leaders will convene at SEMICON Korea 2014 in Seoul on February 12-14 to discuss the latest trends and technologies shaping the future of microelectronics manufacturing. Fab construction spending is expected to grow from about US$ 1.1billion in 2013 to $1.4 to 1.8 billion in 2014.  The 27th annual SEMICON Korea, the leading semiconductor technology event serving the region, will be held at COEX in Seoul. The event opens with a keynote speech by Dr. Roawen Chen from Qualcomm on “Mobile Innovation: Leading the Semiconductor Industry to a Smart, Connected World.”

Element Six, a developer of synthetic diamond supermaterials, today announced that the University of Strathclyde has successfully demonstrated two notable high-power laser research developments—the first ever tunable diamond Raman laser and the first continuous-wave (CW) laser—both using Element Six’s synthetic diamond material. These two achievements prove diamond’s viability as a material for solid-state laser engineering, even in the most demanding intracavity applications.

Novoset, LLC and Lonza introduced the Primaset ULL-950 and Primaset HTL-300 ultra-low loss and high temperature thermoset materials for the telecommunication and advanced semiconductor packaging industries. These thermoset resins are based on Cyanate ester (CE) chemistry.

Solid State Watch: January 24-30, 2014

Friday, January 31st, 2014
YouTube Preview Image