Part of the  

Solid State Technology

  and   

The Confab

  Network

About  |  Contact

Posts Tagged ‘Samsung Electronics’

ST licenses 28nm FD-SOI to Samsung

Friday, May 16th, 2014

By Ed Korczynski, Sr. Technical Editor, SST/SemiMD

On May 14, 2014 it was announced that STMicroelectronics and Samsung Electronics signed an agreement on 28nm Fully Depleted Silicon-on-Insulator (FD-SOI) technology for multi-source manufacturing collaboration. The agreement includes ST’s fully developed process technology and design enablement ecosystem from its 300mm facility in Crolles, France. The Samsung 28nm FD-SOI process will be qualified in early 2015 for volume production.

“Building upon the existing solid relationship between ST and Samsung within the framework of the International Semiconductor Development Alliance, this 28nm FD-SOI agreement expands the ecosystem and augments fab capacity for ST and the entire electronics industry,” said Jean-Marc Chery, COO, STMicroelectronics. “We foresee further expansion of the 28nm FD-SOI ecosystem, to include the leading EDA and IP suppliers, which will enrich the IP catalog available for 28nm FD-SOI.”

According to Handel Jones, founder and CEO of International Business Strategies Inc. (IBS), “The 28nm node will be long-lived; we expect it to represent approximately 4.3 million wafers in the 2017 timeframe, and FD-SOI could capture at least 25 percent of this market.”

Table 1 shows IBS data estimating costs for different 28nm fab process technologies.

“We are pleased to announce this 28nm FD-SOI collaboration with ST. This is an ideal solution for customers looking for extra performance and power efficiency at the 28nm node without having to migrate to 20nm,” said Dr. Seh-Woong Jeong, executive vice president of System LSI Business, Samsung Electronics. “28nm process technology is a highly productive process technology and expected to have a long life span based on well-established manufacturing capabilities.”

In June 2012, ST announced that GLOBALFOUNDRIES had joined the FD-SOI party for the 28nm and 20nm nodes. However, though the name has since changed from “20nm” to “14nm” (Table 2), work continues nonetheless with GLOBALFOUNDRIES on 14nm FD-SOI with prototyping and IP validation vehicles planned to run by the end of this year. Samsung has so far only licensed the 28nm node technology from ST. A representative of GLOBALFOUNDRIES reached for comment on this news expressed welcome to Samsung as an additional supplier in the FD-SOI ecosystem.

“Leti continues its development of further generations and our technology and design results show great promise for the 14nm and 10nm nodes,” said Laurent Malier, CEO of CEA-Leti (Laboratory for Electronics and Information Technology). Leti and ST are not against finFET technology, but sees it as complementary to SOI. In fact the ecosystem plans to add finFETs to the FD-SOI platform for the 10nm node, at which point Taiwanese foundry UMC plans to join.

FD-SOI Substrate Technology

Soitec, a world leader in generating and manufacturing revolutionary semiconductor materials for the electronics and energy industries, supplies most of the world’s SOI wafers. Paul Boudre, COO of Soitec, commented, “Our FD-SOI wafers represent an incredible technology achievement, resulting from over 10 years of continuous research and high-volume manufacturing expertise. With our two fabs and our licensing strategy, the supply chain is in place and we are very excited by this opportunity to provide the semiconductor industry with our smart substrates in high volume to enable widespread deployment of FD-SOI technology.”

Soitec’s R&D of ultra-thin SOI was partly funded and facilitated by the major French program called “Investments for the Future.” Soitec has collaborated with CEA-Leti on process evolution and characterization, with IBM Microelectronics for device validation and collaboration, and with STMicroelectronics to industrialize and demonstrate the first products.

Boudre, in an exclusive interview with SST/SemiMD, explained, “For 28nm node processing we use a 25+-1nm buried oxide layer, which is reduced in thickness to 20+-1nm when going to the 14nm node and we don’t see any differences in the substrate production. However, for the 10nm node the buried oxide layer needs to be 15nm thin, and we will need some new process steps to be able to embed nMOS strain into substrates.”

—E.K.

The Week In Review: May 2, 2014

Friday, May 2nd, 2014

Sensor hubs that offload tasks from power-hungry application processors and let mobile devices like smartphones and tablets run longer on a single battery charge are reaping gargantuan gains thanks to the global MEMS market, with shipment growth this year alone in triple-digit territory, according to this recent analysis from IHS Technology.

Brooks Automation, Inc. announced that it has entered into a definitive agreement to acquire Dynamic Micro Systems Semiconductor Equipment GmbH.

Entegris, Inc. announced that it has completed its acquisition of ATMI, Inc., creating a supplier of products and materials for semiconductor and other advanced manufacturing.

Abracon announced the relaunch of its MEMS oscillators series. Abracon’s miniature ASCSM series was originally launched in 2013 and is being relaunched in June 2014 with the incorporation of enhanced production processes.

Quantum Global Technologies LLC announced it joined SEMATECH in Albany NY, to advance process tool chamber parts cleanliness and analytical methods to meet sub-20nm wafer fabrication process requirements.

Samsung Electronics said that it has begun mass producing the industry’s first high-performance, three-bit-NAND-based SSD for servers and data centers.