Part of the  

Solid State Technology

  and   

The Confab

  Network

About  |  Contact

Posts Tagged ‘ramp’

Fab Facilities Data and Defectivity

Monday, August 1st, 2016

thumbnail

By Ed Korczynski, Sr. Technical Editor

In-the-know attendees at SEMICON West at a Thursday morning working breakfast heard from executives representing the world’s leading memory fabs discuss manufacturing challenges at the 4th annual Entegris Yield Forum. Among the excellent presenters was Norm Armour, managing director worldwide facilities and corporate EHSS of Micron. Armour has been responsible for some of the most famous fabs in the world, including the Malta, New York logic fab of GlobalFoundries, and AMD’s Fab25 in Austin, Texas. He discussed how facilities systems effect yield and parametric control in the fab.

Just recently, his organization within Micron broke records working with M&W on the new flagship Fab 10X in Singapore—now running 3D-NAND—by going from ground-breaking to first-tool-in in less than 12 months, followed by over 400 tools installed in 3 months. “The devil is in the details across the board, especially for 20nm and below,” declared Armour. “Fabs are delicate ecosystems. I’ll give a few examples from a high-volume fab of things that you would never expect to see, of component-level failures that caused major yield crashes.”

Ultra-Pure Water (UPW)

Ultra-Pure Water (UPW) is critical for IC fab processes including cleaning, etching, CMP, and immersion lithography, and contamination specs are now at the part-per-billion (ppb) or part-per-trillion (ppt) levels. Use of online monitoring is mandatory to mitigate risk of contamination. International Technology Roadmap for Semiconductors (ITRS) guidelines for UPW quality (minimum acceptable standard) include the following critical parameters:

  • Resistivity @ 25C >18.0 Mohm-cm,
  • TOC <1.0 ppb,
  • Particles/ml < 0.3 @ 0.05 um, and
  • Bacteria by culture 1000 ml <1.

In one case associated with a gate cleaning tool, elevated levels of zinc were detected with lots that had passed through one particular tool for a variation on a classic SC1 wet clean. High-purity chemistries were eliminated as sources based on analytical testing, so the root-cause analysis shifted to to the UPW system as a possible source. Then statistical analysis could show a positive correlation between UPW supply lines equipped with pressure regulators and the zinc exposure. The pressure regulator vendor confirmed use of zinc-oxide and zinc-stearate as part of the assembly process of the pressure regulator. “It was really a curing agent for an elastomer diaphragm that caused the contamination of multiple lots,” confided Armour.

UPW pressure regulators are just one of many components used in facilities builds that can significantly degrade fab yield. It is critical to implement a rigorous component testing and qualification process prior to component installation and widespread use. “Don’t take anything for granted,” advised Armour. “Things like UPW regulators have a first-order impact upon yield and they need to be characterized carefully, especially during new fab construction and fit up.”

Photoresist filtration

Photoresist filtration has always been important to ensure high yield in manufacturing, but it has become ultra-critical for lithography at the 20nm node and below. Dependable filtration is particularly important because industry lacks in-line monitoring technology capable of detecting particles in the range below ~40nm.

Micron tried using filters with 50nm pore diameters for a 20nm node process…and saw excessive yield losses along with extreme yield variability. “We characterized pressure-drop as a function of flow-rate, and looked at various filter performances for both 20nm and 40nm particles,” explained Armour. “We implemented a new filter, and lo and behold saw a step function increase in our yields. Defect densities dropped dramatically.” Tracking the yields over time showed that the variability was significantly reduced around the higher yield-entitlement level.

Airborne Molecular Contamination (AMC)

Airborne Molecular Contamination (AMC) is ‘public enemy number one’ in 20nm-node and below fabs around the world. “In one case there were forrest fires in Sumatra and the smoke was going into the atmosphere and actually went into our air intakes in a high volume fab in Taiwan thousands of miles away, and we saw a spike in hydrogen-sulfide,” confided Armour. “It increased our copper CMP defects, due to copper migration. After we installed higher-quality AMC filters for the make-up air units we saw dramatic improvement in copper defects. So what is most important is that you have real-time on-line monitoring of AMC levels.”

Building collaborative relationships with vendors is critical for troubleshooting component issues and improving component quality. “Partnering with suppliers like Entegris is absolutely essential,” continued Armour. “On AMCs for example, we have had a very close partnership that developed out of a team working together at our Inotera fab in Taiwan. There are thousands of important technologies that we need to leverage now to guarantee high yields in leading-node fabs.” The Figure shows just some of the AMCs that must be monitored in real-time.

Big Data

The only way to manage all of this complexity is with “Big Data” and in addition to primary process parameter that must be tracked there are many essential facilities inputs to analytics:

  • Environmental Parameters – temperature, humidity, pressure, particle count, AMCs, etc.
  • Equipment Parameters – run state, motor current, vibration, valve position, etc.
  • Effluent Parameters – cooling water, vacuum, UPW, chemicals, slurries, gases, etc.

“Conventional wisdom is that process tools create 90% of your defect density loss, but that’s changing toward facilities now,” said Armour. “So why not apply the same methodologies within facilities that we do in the fab?” SPC is after-the-fact reactive, while APC is real-time fault detection on input variables, including such parameters as vibration or flow-rate of a pump.

“Never enough data,” enthused Armour. “In terms of monitoring input variables, we do this through the PLCs and basically use SCADA to do the fault-detection interdiction on the critical input variables. This has been proven to be highly effective, providing a lot of protection, and letting me sleep better at night.”

Micron also uses these data to provide site-to-site comparisons. “We basically drive our laggard sites to meet our world-class sites in terms of reducing variation on facility input variables,” explained Armour. “We’re improving our forecasting as a result of this capability, and ultimately protecting our fab yields. Again, the last thing a fab manager wants to see is facilities causing yield loss and variation.”

—E.K.

Managing Dis-Aggregated Data for SiP Yield Ramp

Monday, August 24th, 2015

thumbnail

By Ed Korczynski, Sr. Technical Editor

In general, there is an accelerating trend toward System-in-Package (SiP) chip designs including Package-On-Package (POP) and 3D/2.5D-stacks where complex mechanical forces—primarily driven by the many Coefficient of Thermal Expansion (CTE) mismatches within and between chips and packages—influence the electrical properties of ICs. In this era, the industry needs to be able to model and control the mechanical and thermal properties of the combined chip-package, and so we need ways to feed data back and forth between designers, chip fabs, and Out-Sourced Assembly and Test (OSAT) companies. With accelerated yield ramps needed for High Volume Manufacturing (HVM) of consumer mobile products, to minimize risk of expensive Work In Progress (WIP) moving through the supply chain a lot of data needs to feed-forward and feedback.

Calvin Cheung, ASE Group Vice President of Business Development & Engineering, discussed these trends in the “Scaling the Walls of Sub-14nm Manufacturing” keynote panel discussion during the recent SEMICON West 2015. “In the old days it used to take 12-18 months to ramp yield, but the product lifetime for mobile chips today can be only 9 months,” reminded Cheung. “In the old days we used to talk about ramping a few thousand chips, while today working with Qualcomm they want to ramp millions of chips quickly. From an OSAT point of view, we pride ourselves on being a virtual arm of the manufacturers and designers,” said Cheung, “but as technology gets more complex and ‘knowledge-base-centric” we see less release of information from foundries. We used to have larger teams in foundries.” Dick James of ChipWorks details the complexity of the SiP used in the Apple Watch in his recent blog post at SemiMD, and documents the details behind the assumption that ASE is the OSAT.

With single-chip System-on-Chip (SoC) designs the ‘final test’ can be at the wafer-level, but with SiP based on chips from multiple vendors the ‘final test’ now must happen at the package-level, and this changes the Design For Test (DFT) work flows. DRAM in a 3D stack (Figure 1) will have an interconnect test and memory Built-In Self-Test (BIST) applied from BIST resident on the logic die connected to the memory stack using Through-Silicon Vias (TSV).

Fig.1: Schematic cross-sections of different 3D System-in-Package (SiP) design types. (Source: Mentor Graphics)

“The test of dice in a package can mostly be just re-used die-level tests based on hierarchical pattern re-targeting which is used in many very large designs today,” said Ron Press, technical marketing director of Silicon Test Solutions, Mentor Graphics, in discussion with SemiMD. “Additional interconnect tests between die would be added using boundary scans at die inputs and outputs, or an equivalent method. We put together 2.5D and 3D methodologies that are in some of the foundry reference flows. It still isn’t certain if specialized tests will be required to monitor for TSV partial failures.”

“Many fabless semiconductor companies today use solutions like scan test diagnosis to identify product-specific yield problems, and these solutions require a combination of test fail data and design data,” explained Geir Edie, Mentor Graphics’ product marketing manager of Silicon Test Solutions. “Getting data from one part of the fabless organization to another can often be more challenging than what one should expect. So, what’s often needed is a set of ‘best practices’ that covers the entire yield learning flow across organizations.”

“We do need a standard for structuring and transmitting test and operations meta-data in a timely fashion between companies in this relatively new dis-aggregated semiconductor world across Fabless, Foundry, OSAT, and OEM,” asserted John Carulli, GLOBALFOUNDRIES’ deputy director of Test Development & Diagnosis, in an exclusive discussion with SemiMD. “Presently the databases are still proprietary – either internal to the company or as part of third-party vendors’ applications.” Most of the test-related vendors and users are supporting development of the new Rich Interactive Test Database (RITdb) data format to replace the Standard Test Data Format (STDF) originally developed by Teradyne.

“The collaboration across the semiconductor ecosystem placed features in RITdb that understand the end-to-end data needs including security/provenance,” explained Carulli. Figure 2 shows that since RITdb is a structured data construct, any data from anywhere in the supply chain could be easily communicated, supported, and scaled regardless of OSAT or Fabless customer test program infrastructure. “If RITdb is truly adopted and some certification system can be placed around it to keep it from diverging, then it provides a standard core to transmit data with known meaning across our dis-aggregated semiconductor world. Another key part is the Test Cell Communication Standard Working Group; when integrated with RITdb, the improved automation and control path would greatly reduce manually communicated understanding of operational practices/issues across companies that impact yield and quality.”

Fig.2: Structure of the Rich Interactive Test Database (RITdb) industry standard, showing how data can move through the supply chain. (Source: Texas Instruments)

Phil Nigh, GLOBALFOUNDRIES Senior Technical Staff, explained to SemiMD that for heterogeneous integration of different chip types the industry has on-chip temperature measurement circuits which can monitor temperature at a given time, but not necessarily identify issues cause by thermal/mechanical stresses. “During production testing, we should detect mechanical/thermal stress ‘failures’ using product testing methods such as IO leakage, chip leakage, and other chip performance measurements such as FMAX,” reminded Nigh.

Model but verify

Metrology tool supplier Nanometrics has unique perspective on the data needs of 3D packages since the company has delivered dozens of tools for TSV metrology to the world. The company’s UniFire 7900 Wafer-Scale Packaging (WSP) Metrology System uses white-light interferometry to measure critical dimensions (CD), overlay, and film thicknesses of TSV, micro-bumps, Re-Distribution Layer (RDL) structures, as well as the co-planarity of Cu bumps/pillars. Robert Fiordalice, Nanometrics’ Vice President of UniFire business group, mentioned to SemiMD in an exclusive interview that new TSV structures certainly bring about new yield loss mechanisms, even if electrical tests show standard results such as ‘partial open.’ Fiordalice said that, “we’ve had a lot of pull to take our TSV metrology tool, and develop a TSV inspection tool to check every via on every wafer.” TSV inspection tools are now in beta-tests at customers.

As reported at 3Dincites, Mentor Graphics showed results at DAC2015 of the use of Calibre 3DSTACK by an OSAT to create a rule file for their Fan-Out Wafer-Level Package (FOWLP) process. This rule file can be used by any designer targeting this package technology at this assembly house, and checks the manufacturing constraints of the package RDL and the connectivity through the package from die-to-die and die-to-BGA. Based on package information including die order, x/y position, rotation and orientation, Calibre 3DSTACK performs checks on the interface geometries between chips connected using bumps, pillars, and TSVs. An assembly design kit provides a standardized process both chip design companies and assembly houses can use to ensure the manufacturability and performance of 3D SiP.

—E.K.


Extension Media websites place cookies on your device to give you the best user experience. By using our websites, you agree to placement of these cookies and to our Privacy Policy. Please click here to accept.