Part of the  

Solid State Technology

  and   

The Confab

  Network

About  |  Contact

Posts Tagged ‘PVD’

New Applied PVD system targets TiN hardmasks for 10nm, 7nm chips

Tuesday, May 19th, 2015

thumbnail

By Jeff Dorsch, Contributing Editor

Applied Materials today introduces the Applied Endura Cirrus HTX PVD, a physical vapor deposition system for creating titanium nitride hardmask films that could be used in fabricating 10-nanometer and 7nm chips.

“Titanium nitride is the metal hardmask of choice,” harder than copper and nearly as hard as diamond, says Sree Kesapragada, Applied’s global product manager for Metal Deposition Products.

“Patterning plays key role in defining the interconnect,” Kesapragada says. “Perfect via alignment is critical for device yield. Hardmask ensures the perfect via alignment critical for yield.”

The hardmasks created with the Endura Cirrus HTX TiN system strike the required balance between neutral stress and film density hardness, he asserts. The TiN hardmask, meant to resist the erosion of etching, helps ensure that via etches land where they are supposed to, and not too close to neighboring vias, which can creates shorts.

Metal hardmask layer manages alignment errors.

Applied has worked with customers at multiple sites in developing the new PVD system over the past two to three years, according to Kesapragada. He emphasizes that the Cirrus HTX TiN system offers “precision control over TiN crystal growth,” as the process chamber is “designed for tensile high-density TiN films.” The new PVD system enables high density, tensile films thanks to a high level of ionization during deposition made possible by a high frequency source.

High film desnity is needed to prevent erosion, and a neutral-to-tensile stress is needed for pattern fidelity. CVD/ALD films have tensile stress, but are low density. Traditionally deposited TiN films have good density, but compressive stress.

The formation of “islands” of TiN crystals is almost like chemical vapor deposition, “layer by layer,” Kesapragada says, “in a PVD chamber.”

In the process chamber, the first of its kind, titanium atoms are reactively sputtered in a nitrogen-based plasma, allowing for tunable composition, according to Applied. This chamber can be used for high-volume manufacturing of semiconductors with 7nm features, covering two process-node generations, Kesapragada says.

There is also “very established integration” with chemical mechanical planarization equipment, he adds.

Applied is the market leader in TiN PVD systems, with more than 200 systems shipped, according to Kesapragada. Those PVD systems have more than 700 process chambers, he adds.

The Endura Cirrus HTX TiN PVD system is being formally introduced this week at the IEEE’s 2015 International Interconnect Technology Conference in Grenoble, France.

Solid State Watch: May 23-29, 2014

Wednesday, June 4th, 2014
YouTube Preview Image

The Week in Review: Nov. 15, 2013

Friday, November 15th, 2013

SEMI Standards task forces are working on encouraging the industry to collaborate on key issues like the technical parameters for 450mm silicon wafers, physical interfaces, carriers, assembly and packaging. To date, SEMI has 13 task forces working on 450mm and has published nineteen (19) 450mm standards with 14 more in the pipeline. Here’s an update on the newly-published SEMI 450mm specifications as well as the other 450mm SEMI Standards.

Xilinx announced  first customer shipment of the semiconductor industry’s first 20nm product manufactured by TSMC, and the PLD industry’s first 20nm All Programmable device.  Xilinx UltraScale devices deliver an ASIC-class advantage  with  the industry’s only ASIC-class programmable architecture coupled with the Vivado ASIC-strength design suite and recently introduced UltraFast design methodology. The UltraScale devices enable 1.5X – 2X more realizable system-level performance and integration for customers, equivalent to a generation ahead of the competition.

SEMI also announced this that the deadline for presenters to submit an abstract for the 25th annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC) is extended to November 28.  ASMC, which takes place May 19-21, 2014 in Saratoga Springs, New York, will feature technical presentations of more than 80 peer-reviewed manuscripts covering critical process technologies and fab productivity.

FlipChip International announced the 100% acquisition of Millennium Microtech (Shanghai) – (MMS), a provider of fully integrated semiconductor packaging and testing services situated in the Zhang Jiang Hi- Tech Park, Pudong New Area, Shanghai, China. The MMS name will be changed to FlipChip International.

Tosoh Corporation announced today that Tosoh Group company Tosoh SMD, Inc., will implement a major expansion at its Grove City, Ohio, operations to develop, produce, and support physical vapor deposition (PVD) sputtering targets for the new 450mm wafer semiconductor market. The expansion is the biggest investment in Tosoh SMD’s history and is meant to position the company for the next generation products and technologies. It will include facilities, novel equipment and tools for manufacturing, and a sputter deposition tool for R&D and evaluation purposes. The first stage is slated to be ready by December 2014.

Applied Materials rolls out new CVD and PVD systems for IGZO-based displays

Thursday, October 17th, 2013

By Pete Singer, Editor-in-Chief, Solid State Technology

Applied Materials introduced three new tools for the display market aimed at metal oxide thin film transistors. The tools, one of which is CVD and the other two PVD, employ new hardware designs and process technology that enable better film uniformity with fewer defects, and are designed for use with next generation IGZO-based thin film transistors (TFTs). The display industry is quickly switching to metal oxide TFTs and IGZO (indium gallium zinc oxide) is the material of choice.

Higher resolution LCD displays, greater than 300 dpi, require a switch from amorphous silicon designs to either metal oxide transistors or low-temperature polysilicon (LTPS), which offer higher-mobility in a smaller area (Figure 1). They also operate at lower power levels, which is important in mobile devices. Another problem with larger transistors is that they block too much of the light in the display.

LG has already begun shipping 55-inch OLED TVs using metal oxide backplanes and by 2014, all major LCD and LED display makers will have begun the switch over to metal oxide TFTs.

The advantage of metal oxide transistors over LTPS transistors is that they consume less power and are more easily scaled.

The layers in an IGZO transistor are deposited by both PVD and CVD, according to Max McDaniel, Applied Materials’ director and chief marketing officer for its display business. Figure 2 shows a cross-section of the device. “You use PVD to deposit the metal gate material (on the glass substrate), then you have an insulator over the top of the gate (GI = gate insulator in the figure). That’s deposited by PECVD. On top of that, you’ve got the active layer, which is the IGZO. This is deposited by PVD. Then you’ve an etch stop layer (ESTL in the figure) and that’s a PVD layer. Then you’ve got the source/drain, which is a metal deposited by CVD. Finally, you’ve got the passivation on the top which is a CVD layer,” McDaniel said. He noted that these interfaces between the CVD layers and the IGZO are critical. “We want to reduce the hydrogen as much as we can, so that’s what our technology helps the customer to do,” he said, adding that Applied Materials has the capability to build transistors in house and test them. “We’re able to solve some of these integration challenges before we deliver it to the customer.”

This time last year, Applied Materials introduced two new products. One offers a new design for depositing IGZO films for TFTs; the other handles bigger substrates of low temperature polysilicon (LTPS) films to help lower manufacturing costs.

The three new products now being introduced are the Applied AKT-PiVot 55K DT PVD, Applied AKT-PiVot 25K DT PVD and Applied AKT 55KS PECVD. The 55k nomenclature is a reference to the Gen 8.5 size panesl the system can handle, which are 2.2m x 2.5 m, or 55,000 cm2. DT stands for “dual track” which is new.

The AKT-55KS

The AKT-PiVot DT PVD system.

One of the key changes in the 55KS PECVD system include is related to how process gas is distributed the substrate surface. “The hundreds of thousands of holes that the gas is distributed out of – you have to customize them across the whole area of the chamber to compensate for the shape of the plasma,” McDaniel said. “It’s not just the diameter of the holes, it’s the depth of them.” A new gas deflector pre-distributes the gas before it goes into the diffuser, and support structures were added to achieve a higher degree of flatness over the 2.5 wide area.

New hardware provide better gas distribution and better uniformity.

On the PVD side, the new systems are designed specifically for IGZO. “Unlike our prior Pivot PVD system, where you want to have lots of chambers and be able to run multiple materials in different chambers, customers really want a system that just deposited the IGZO,” McDanield said. “It gets the substrates in and out quickly, so this is a compact, efficient platform that’s designed for depositing the IGZO.” The 25K system is targets displays for mobile applications. “We’re entering a whole new segment,” McDanield added.

The Pivot employs a set of rotary cathodes and targets, which act quite differently than conventional planar targets. Planar targets don’t get consumed uniformly and there can be redeposition of the material back onto the target. This redeposited material can spall off as particles. “Our technology is different,” McDaniel said. “The target is an array of rotating targets/cathodes. As they are being bombarded and consumed, you’re actually rotating the tubes in a circle and consuming them evenly throughout the deposition. The other benefit is this is a reactive process so you also have to introduce oxygen gas into the reaction. With the planar cathode, you have to introduce the gas from around the sides of the planar target. It’s hard to get it evenly over the substrate. With this array of tubes, you can introduce the process gas in between the tubes and get it uniformly distributed over the substrate,” he said. The rotary cathode employ magnets inside the tubes for uniformity enhancement.

Old-style planar (left) vs new-style rotary (right).

Material can redeposit onto planar cathodes (left) but that doesn't happen on rotray cathodes (right).

McDaniel added that presently everyone who is doing metal oxide IGZO use the etch stop (ES) structure (Figure, right), but would like to eliminate the etch stop and use a back channel etch (BCD) directly (Figure, left). “The IGZO material is very sensitive to hydrogen. What you’re trying to do is not expose it to the etching chemistry,” he said. “You put an etch stop layer on top of the IGZO, which is a CVD SiO2 process, and that protects it while you’re etching the source and drain. That adds an extra mask and extra process step. The panel makers would like to get rid of that etch stop layer and go to a back channel etch (BCE). This is where you etch the source drain directly down all the way to the IGZO and it’s unprotected. We’re not there yet, but the industry would like to see that structure developed. That’s on the roadmap for the industry.”

The display industry hopes to use a back channel etch (left), but presently uses an etch stop layer (right), which adds an extra mask and process step.

Looking forward, the holy grail for the display industry might just be the flexible display. McDaniel said flex displays will not likely be based on LCDs, but OLEDs. “For flexible OLED, you want to deposit on a flexible, non-glass substrate and then you need to encapsulate the OLEDs with something other than rigid glass.” This could require numerous thin films, which is good news for a supplier of tool deposition systems. He added that they would probably require an alternative to ITO (a commonly used transparent conductor). “There are a number of ITO replacement materials that are being looked at now, so as metal mesh, nanowires and even carbon nanotubes,” he said.

Improving the Quality of PVD Cu Seed Layer

Monday, January 23rd, 2012

Improving the Quality of PVD Cu Seed Layer


Extension Media websites place cookies on your device to give you the best user experience. By using our websites, you agree to placement of these cookies and to our Privacy Policy. Please click here to accept.