Part of the  

Solid State Technology

  and   

The Confab

  Network

About  |  Contact

Posts Tagged ‘Mentor Graphics’

Next Page »

Closed-Loop DFM Solution Accelerates Yield Ramps

Monday, June 6th, 2016

thumbnail

Mentor Graphics Corp. announced that Samsung Foundry’s closed-Loop design-for-manufacturing (DFM) solution uses production Mentor Calibre and Tessent platforms to accelerate customer yield ramps.

In the Closed-Loop DFM flows, Samsung integrates its DFM kits with its testing and manufacturing expertise to identify integrated circuit design patterns that are most likely to impact manufacturing yield, thereby helping customers improve design quality, yield, and ramp to production.

“We can detect the risks in customer products and prevent them,” said K.K. (Kuang-Kuo) Lin, Director, Foundry Marketing Ecosystem, Samsung Semiconductor. “We have seen yield gain of up to 8.5%. In terms of the post-manufacturing yield analysis, we have seen the benefits of around 2%. These numbers are not guaranteed because each product is different, but from our experience, these are the numbers we have seen.”

The Samsung solution extracts customer yield-averse design patterns, feeds that information forward to optimize manufacturing and testing, and closes the loop with feedback from silicon results for product design and yield improvement. This solution is not only useful to initial customer designs, but it also allows learning from current production designs to be applied to next-generation designs from that same customer across entire product families.

As shown in Figure 1, Samsung’s foundry offerings cover the needs of devices, ranging from the IoT to consumer, mobile computing, high end computing to automotive. The company, which first got into the foundry business in 2005, claims to be the first foundry to have high-k metal gates in production (in 2011), the first foundry to offer FinFET risk production (in 2013) and the first foundry to tape out a 10nm product. “We are also at the forefront of 7nm. We call it 7LPP, which will be based on EUV,” he added.

Figure 1

With the end goal of rapid yield ramp for new production introduction, Samsung turned to Mentor Graphics tools for pre-production DFM, which it calls PRISM (pattern recognition and identity scoring methods), which runs on Mentor’s Calibre platform. For this pre-production phase, “we provide very comprehensive process-aware DFM sign-off kits and optimization flow for the designers so they can double-check and verify, prevent any DFM issues during the design phase,” Lin said.

The other component of closed-loop DFM is in post-manufacturing. Samsung has developed as set of tools called FLARE (Failure analysis And yield Rank Estimation with DFM hotspot database), which runs on Mentor’s Tesset platform.

Figure 2 shows how PRISM and FLARE work together in a closed-loop fashion for pre- and post-production DFM.

Figure 2

“Every design has its idiosyncrasies and its unique signatures because layout designers can be pretty creative,” Lin explained. “We use PRISM to do extensive pattern analysis and then do optimization during the data prep and also use the pattern analysis result to drive in-line inspection.”

Once the wafer is manufactured in the fab, FLARE involves mapping a yield learning database with EDS, (electrical engineering die-sort data). “We’ll combine them to do yield pareto data analysis and also mapping analysis. From those deep learning, we are able to prioritize which part of the fab process we can improve. We can also feedback to the DFM kit which we use in the design phase, which gives the designer feedback on what they can further improve,” Lin said.

At the heard of PRISM is a defect database built from test vehicles and existing products (Figure 3). “We put all the patterns that we know into this defect database,” Lin explained. “We also couple it with some very novel things. We use a layout schematic generator from Mentor to increase the coverage, to enumerate all the possible patterns. And then we also have meta data and simulators to do yield prediction of those known defects from different sources.”

Figure 3

“Once a customer product comes into Samsung foundry, we will check against the known defect database. Then we will do prediction in terms of the process margin and feed-forward this data into the subsequent steps of data prep or retargeting, and in-line inspection so we can prioritize our resources to know what to inspect and what not to in the manufacturing steps,” Lin said (see Figure 4).

Figure 4

“FLARE accelerates the learning in the fab to bring up customer products in our foundry. It helps the customer achieve their time to market. It also saves on fab operation costs, so it’s a win-win situation for everyone,” Lin said.

The Closed-Loop DFM flows are in production use today for customers of Samsung Foundry services. While proven in 14 nm technology, the flows can be used for ICs manufactured with other Samsung process nodes.

At the 2016 Design Automation Conference, Mentor and Samsung are co-hosting a lunch seminar entitled “Accelerate Yield Ramps with Samsung Foundry Closed-Loop DFM and Mentor Tools.” The event is Monday, June 6, from 12:00 to 1:30 PM. Interested customers can register for the event using this registration link.

https://www.mentor.com/products/ic_nanometer_design/events/samsung-dac-lunch-seminar

Mentor’s Pattern Matching Tackles IC Verification and Manufacturing Problems

Sunday, June 5th, 2016

thumbnail

Mentor Graphics Corporation announced that customers and ecosystem partners are expanding their use of Calibre Pattern Matching solution to overcome previously intractable IC verification and manufacturing problems. The solution is integrated into the Mentor® Calibre nmPlatform solution, creating a synergy that drives these new applications at IC design companies and foundries, across multiple process nodes.

Calibre Pattern Matching technology supplements multi-operational text-based design rules with an automated visual geometry capture and compare process. This visual approach is both very powerful in its ability to capture complex pattern relationships, and to work within mixed tool flows, making it much easier for Mentor customers to create new applications to solve difficult problems. Because it is integrated into the Calibre nmPlatform toolset, the Calibre Pattern Matching functionality can leverage the industry-leading performance and accuracy of all Calibre tools and flows to create new opportunities for design-rule checking (DRC), reliability checking, DFM, yield enhancement, and failure analysis.

“Our customers count on eSilicon’s design services, IP, and ecosystem management to help them succeed in delivering market-leading ICs,” said Deepak Sabharwal, general manager, IP products & services at eSilicon. “We use Calibre Pattern Matching to create and apply a Calibre-based yield-detractor design kit that helps identify and eliminate design patterns that impact production ramp-up time.”

Since its introduction, use models for Calibre Pattern Matching technology have rapidly expanded, solving problems that were previously too complex or time-consuming to be implemented. New use cases include the following:

  • Physical verification of IC designs with curved structures—for analog, high-power, radio frequency (RF) and microelectromechanical (MEMS) circuitry—is extremely difficult with products designed to work with rectilinear design data. Calibre customers are automating that verification using a combination of Calibre Pattern Matching technology and other Calibre tools for much greater efficiency and accuracy, especially when compared to manual techniques.
  • Calibre Pattern Matching technology can be used to quickly locate and remove design patterns that are known or suspected of  being difficult to manufacture (“yield detractors”). Foundries or design companies create libraries of yield detractor patterns that are specific to a process node or a particular design methodology. Samsung Foundry used this approach in its Closed-Loop DFM solution to help its customers ramp to volume faster, and reduce process-design variability.
  • Some customers use Calibre Pattern Matching technology with Calibre Auto-Waivers™ functionality to define a specific context for waiving a DRC violation. This enhancement allows for automatic filtering of those violations for significant time savings and improved design quality.

“To help our customers create manufacturing-ready designs, we use Calibre Pattern Matching to create and use a yield detractor database to fix most of the litho hotspots in the block level. Then we perform fast signoff DFM litho checking at the chip level using an integrated solution with Calibre Pattern Matching and Calibre LFD” said Min-Hwa Chi, senior vice president, SMIC. “By offering a solution for manufacturability robustness that is built on the Calibre platform, we are seeing ready customer adoption of SMIC’s DFM solution.”

With the Calibre Pattern Matching tool, design companies can now optimize their physical verification checking to their unique design styles. The tool is easy to adopt because it doesn’t rely on expertise in scripting languages. Instead, any engineer can readily define a visual pattern that captures the designer’s expertise in the critical geometries and context for that configuration.

“With the growing adoption of Calibre Pattern Matching technology, Mentor continues to help our customers address increasing design complexity, regardless of the process node they are targeting,” said Joe Sawicki, vice president and general manager of the Design-to-Silicon division at Mentor Graphics. “By incorporating the Calibre Pattern Matching tool, the Calibre platform becomes an even more valuable bridge between design and manufacturing for the ecosystem.”

At the 2016 Design Automation Conference, Mentor has a Calibre Pattern Matching presentation on Tuesday, June 7 at 3PM in the Mentor booth #949. Register for the session using the registration form.

https://www.mentor.com/events/design-automation-conference/schedule

Samsung’s Closed-Loop DFM Solution Accelerates Yield Ramps

Sunday, June 5th, 2016

thumbnail

Mentor Graphics Corp. announced that Samsung Foundry’s closed-Loop design-for-manufacturing (DFM) solution uses production Mentor Calibre and Tessent platforms to accelerate customer yield ramps.

In the Closed-Loop DFM flows, Samsung integrates its DFM kits with its testing and manufacturing expertise to identify integrated circuit design patterns that are most likely to impact manufacturing yield, thereby helping customers improve design quality, yield, and ramp to production.

“We can detect the risks in customer products and prevent them,” said K.K. (Kuang-Kuo) Lin, Director, Foundry Marketing Ecosystem, Samsung Semiconductor. “We have seen yield gain of up to 8.5%. In terms of the post-manufacturing yield analysis, we have seen the benefits of around 2%. These numbers are not guaranteed because each product is different, but from our experience, these are the numbers we have seen.”

The Samsung solution extracts customer yield-averse design patterns, feeds that information forward to optimize manufacturing and testing, and closes the loop with feedback from silicon results for product design and yield improvement. This solution is not only useful to initial customer designs, but it also allows learning from current production designs to be applied to next-generation designs from that same customer across entire product families.

As shown in Figure 1, Samsung’s foundry offerings cover the needs of devices, ranging from the IoT to consumer, mobile computing, high end computing to automotive. The company, which first got into the foundry business in 2005, claims to be the first foundry to have high-k metal gates in production (in 2011), the first foundry to offer FinFET risk production (in 2013) and the first foundry to tape out a 10nm product. “We are also at the forefront of 7nm. We call it 7LPP, which will be based on EUV,” he added.

Figure 1

With the end goal of rapid yield ramp for new production introduction, Samsung turned to Mentor Graphics tools for pre-production DFM, which it calls PRISM (pattern recognition and identity scoring methods), which runs on Mentor’s Calibre platform. For this pre-production phase, “we provide very comprehensive process-aware DFM sign-off kits and optimization flow for the designers so they can double-check and verify, prevent any DFM issues during the design phase,” Lin said.

The other component of closed-loop DFM is in post-manufacturing. Samsung has developed as set of tools called FLARE (Failure analysis And yield Rank Estimation with DFM hotspot database), which runs on Mentor’s Tesset platform.

Figure 2 shows how PRISM and FLARE work together in a closed-loop fashion for pre- and post-production DFM.

Figure 2

“Every design has its idiosyncrasies and its unique signatures because layout designers can be pretty creative,” Lin explained. “We use PRISM to do extensive pattern analysis and then do optimization during the data prep and also use the pattern analysis result to drive in-line inspection.”

Once the wafer is manufactured in the fab, FLARE involves mapping a yield learning database with EDS, (electrical engineering die-sort data). “We’ll combine them to do yield pareto data analysis and also mapping analysis. From those deep learning, we are able to prioritize which part of the fab process we can improve. We can also feedback to the DFM kit which we use in the design phase, which gives the designer feedback on what they can further improve,” Lin said.

At the heard of PRISM is a defect database built from test vehicles and existing products (Figure 3). “We put all the patterns that we know into this defect database,” Lin explained. “We also couple it with some very novel things. We use a layout schematic generator from Mentor to increase the coverage, to enumerate all the possible patterns. And then we also have meta data and simulators to do yield prediction of those known defects from different sources.”

Figure 3

“Once a customer product comes into Samsung foundry, we will check against the known defect database. Then we will do prediction in terms of the process margin and feed-forward this data into the subsequent steps of data prep or retargeting, and in-line inspection so we can prioritize our resources to know what to inspect and what not to in the manufacturing steps,” Lin said (see Figure 4).

Figure 4

“FLARE accelerates the learning in the fab to bring up customer products in our foundry. It helps the customer achieve their time to market. It also saves on fab operation costs, so it’s a win-win situation for everyone,” Lin said.

The Closed-Loop DFM flows are in production use today for customers of Samsung Foundry services. While proven in 14 nm technology, the flows can be used for ICs manufactured with other Samsung process nodes.

At the 2016 Design Automation Conference, Mentor and Samsung are co-hosting a lunch seminar entitled “Accelerate Yield Ramps with Samsung Foundry Closed-Loop DFM and Mentor Tools.” The event is Monday, June 6, from 12:00 to 1:30 PM. Interested customers can register for the event using this registration link.

https://www.mentor.com/products/ic_nanometer_design/events/samsung-dac-lunch-seminar

How to Boost Verification Productivity with SystemVerilog/UVM and Emulation

Tuesday, May 3rd, 2016

thumbnail

By Hans van der Schoot, Ph.D.

Use of emulation for hardware-assisted testbench acceleration is growing as design verification teams find that simulation alone cannot deliver the coverage or performance needed to get large, complex designs to market on time. If your design requires millions of clock cycles to fully verify, you need both simulation and emulation.

Let’s first describe what we mean by testbench acceleration. Testbench acceleration involves an RTL design running in a hardware emulator and interacting with a testbench running on a workstation via emulation-ready, accelerated transactors. This makes emulation easier to use and boosts verification performance. You get both the modeling flexibility and functionality of simulation at the IP and block levels and the enormous performance gains of emulation at the chip, sub-system, and system levels — including the ability to verify embedded software and hardware at the same time.

Figure 1: Transaction-based communication is key to acceleration performance

The goal, then, is to deploy a single, unified testbench environment that is flexible, fast, and portable, moving with you from the block to system level, from simulation to emulation. The principal benefits of a unified testbench environment are increased verification performance and productivity, vertical reuse through platform portability, reduced development effort, and substantially lower design tape-out risk.

So how can you reap these benefits? It is actually more straightforward than you might think to create a unified testbench flow for both simulation and emulation. We’ve distilled it down to three steps:

  1. Employ two separated domains, an untimed HVL domain and a synthesizable HDL domain.
  2. Model all timed testbench code for emulator synthesis in the HDL domain, leaving the HVL domain untimed.
  3. Devise a transaction-level, function-call based communication API between HVL and HDL domains.

While not intrinsically difficult, it will be more intuitive with less effort if you factor in emulation from the get-go when developing your testbench. If done right, using emulation-ready, accelerated transactors shifts testbench load to the emulator, with significant performance benefits. At the same time, you don’t sacrifice simulator verification capabilities and integrations, such as modern coverage-driven and assertion-based techniques and tools.

Imagine running a test that takes hours (or days) in a simulator in mere minutes with the added boost of an emulator. Imagine the number of design and testbench iterations that can be explored with these time savings. Imagine how much extra verification can be accomplished to further mitigate design risk.

We describe the details of SystemVerilog and UVM testbench acceleration using hardware emulation, what we call a dual-domain framework for transaction-based testbench acceleration, in a series of three papers. The papers introduce the fundamental concepts and present the architectural and modeling requirements for SystemVerilog and UVM testbench acceleration using hardware emulation, and the steps to achieve optimal acceleration speed-up.

Additional Resources:

Reducing Design Risk with Testbench Acceleration

Testbench Acceleration Performance Demystified

Optimizing Testbench Acceleration Performance

Rhines Expounds on the Deconsolidation of the Semiconductor Industry

Wednesday, April 27th, 2016

thumbnail

By Jeff Dorsch, Contributing Editor

“By 2020, we are all going to work for the same company,” Wally Rhines, chairman and chief executive officer of Mentor Graphics, said Tuesday morning (April 26) in his keynote presentation at Mentor’s U2U user conference in Santa Clara, Calif.

Taking “Merger Mania” as his theme, the veteran electronic design automation and semiconductor executive reviewed the merger-and-acquisition activity of 2015, some of which is extending into this year. Rhines noted that several of the big acquiring companies in last year’s wave of industry consolidation had names beginning with the letter “M,” while some of the acquired chip enterprises had names beginning with the letter “A.” That, he joked, was the genesis of “M&A” in 2015.

On a more serious note, the Mentor CEO challenged the conventional wisdom that the industry experienced unprecedented deal-making and combination in 2015. The number of deals involved, 30, wasn’t a record, he said. It was the “magnitude” of valuations in those transactions, with a number of multibillion-dollar acquisitions, he added.

The top 10 semiconductor suppliers in the world have changed dramatically since the 1950s, as the industry has transitioned from germanium transistors to silicon-based integrated circuits made with a bipolar process, metal-oxide-semiconductor memory chips, memories/microprocessors, and system-on-a-chip devices, according to Rhines.

The industry market share of the top 50 chip companies has actually declined for many years, through 2014, he noted. “We’re still on a deconsolidation path,” Rhines asserted. “The dynamics of the industry change.”

While the industry was selling 50 percent of its chips for computing applications a decade ago, and 25 percent for communications, the trend has lately shifted, with communications overtaking computers as the leading application, although the line between communications and computing is getting blurrier, Rhines noted.

“Why the acceleration in mergers?” Rhines wondered. The chief factors generally credited are economies of scale, financial leverage, and regulatory/government mandates, he listed.

Despite all the combinations over the years, there is scant evidence that mergers always mean higher profit margins, compared with revenue figures, Rhines said. “There is no correlation between size and profits,” he noted. “It’s not an automatic formula for success. Maybe scale isn’t the answer.”

A more compelling reason for the wave of mergers is “very cheap money,” with historically low rates on corporate loans, Rhines noted. Tax advantages, especially on tax-inversion deals, seem to be fading as an incentive to merge, as the federal government is making it more difficult for large corporations to move their headquarters out of the United States and minimize their tax obligations to the U.S., according to Rhines.

That brings in the consideration of regulations and government mandates. China is engaged in a five-year program to create “greater self-sufficiency” for its domestic semiconductor industry, the Mentor CEO said. Instead of directly subsidizing the growth of semiconductor manufacturers and chip-related suppliers, China’s central government is taking equity stakes in private-equity firms that are making investments in the semiconductor industry, sometimes seeking to acquire companies in the U.S. and around the world, or to take an ownership stake in key companies.

Research and development spending by semiconductor companies goes up and down depending on industry revenue, yet it generally remains flat as a percentage of revenue – typically around 14 percent of revenue, according to Rhines.

Still, “long-term interest rates can’t stay low forever,” he concluded. “Merger mania will be limited.”

In an interview following his keynote, Rhines expounded on the theme of the learning curve – a concept that encompasses Moore’s Law and other observations of technological change. In addition to talking about the learning curve in his keynote, Rhines also wrote about in a recent blog post.

Moore’s Law presents a “limited set of knobs to turn,” he observed. For years, “the most productive thing to do is shrink” the dimensions of ICs, he said. While the demise of Moore’s Law has long been predicted, “the cost per switch/transistor will always be going down,” he added. “You will always see an improvement.”

The Internet of Things is widely touted as the next market to boost the fortunes of the semiconductor industry. IoT could force the industry to “improve enough to enable another application, like wireless,” Rhines said.

In general, the industry is facing substantial manufacturing challenges in getting down to the 16/14-nanometer process node and smaller dimensions. “Every generation has a new physics problem to solve,” Rhines observed. “Complexity grows.”

Chip designers and manufacturers are now dealing with electromigration issues and thermal problems, he noted. EDA is taking on these challenges while also pivoting to the wider considerations of system design, rather than chip or board design, Rhines said.

“Forty percent of our revenue comes from system design,” the Mentor CEO said. Designing systems for automotive vehicles, military/aerospace systems, medical equipment, and other areas represents a $2.5 trillion market in total, compared with about $350 billion for semiconductors, on an annual basis.

Faced with declining revenue and profitability in the 2016 fiscal year, Mentor Graphics offered a voluntary early retirement program for veteran employees, and dozens of them took the buyout benefits, Rhines noted. This represented “a forcible evolution of the company,” he said. “We were going to lose a significant amount of corporate learning.”

While somewhere between 110 and about 200 employees took early retirement, Mentor actually increased its headcount last year, from 5,558 full-time positions as of January 31, 2015, to around 5,700 positions on January 31, 2016.

What about retirement for Rhines, who will celebrate his 70th birthday in November of this year? “I haven’t actually thought about it,” he said in the interview. While carefully noting, “I serve at the will of the board,” Rhines added, “I’m not looking for another job.” He still has the “energy level” for all those red-eye flights to meet with customers, he said. “I don’t play golf,” Rhines commented. “I like a lot of pressure, crises. I love the relationships I have with customers, employees.”

The Rhines keynote was followed Tuesday morning by a keynote from Zach Shelby, vice president of marketing for the Internet of Things at ARM Holdings, who spoke on “Driving Beyond IoT.”

Shelby noted the history of computing, communications, and networking in recent decades. “It takes an ecosystem,” he asserted. ARM, he said, is not just a fabless semiconductor company; “we’re silicon-less,” he said, since ARM is involved in developing and licensing technology for other companies to use. The IC design company works with operators of cloud services, network operators, system integrators and end-users around the world, according to Shelby.

The industry trend is going “from embedded to connected, reaching millions of developers,” he said.

While some see automotive vehicles as “expensive mobile phones,” Shelby said, “They’re becoming autonomous drones.” He added, “The auto is the ultimate intelligent connected device.”

Rhines and Shelby later participated in an afternoon panel session titled “Ripple or Tidal Wave: What’s Driving the Next Wave of Innovation and Semiconductor Revenue?” Also on the panel were James Hogan of Vista Ventures, Brad Howe of Altera, and Kelvin Low of Samsung Semiconductor.

IoT Demands Part 2: Test and Packaging

Friday, April 15th, 2016

By Ed Korczynski, Senior Technical Editor, Solid State Technology, SemiMD

The Internet-of-Things (IoT) adds new sensing and communications to improve the functionality of all manner of things in the world. Solid-state and semiconducting materials for new integrated circuits (IC) intended for ubiquitous IoT applications will have to be extremely small and low-cost. To understand the state of technology preparedness to meet the anticipated needs of the different application spaces, experts from GLOBALFOUNDRIES, Cadence, Mentor Graphics and Presto Engineering gave detailed answers to questions about IoT chip needs in EDA and fab nodes, as published in “IoT Demands:  EDA and Fab Nodes.” We continue with the conversation below.

Korczynski: For test of IoT devices which may use ultra-low threshold voltage transistors, what changes are needed compared to logic test of a typical “low-power” chip?

Steve Carlson, product management group director, Cadence

Susceptibility to process corners and operating conditions becomes heightened at near-threshold voltage levels. This translates into either more conservative design sign-off criteria, or the need for higher levels of manufacturing screening/tests. Either way, it has an impact on cost, be it hidden by over-design, or overtly through more costly qualification and test processes.

Jon Lanson, vice president worldwide sales & marketing, Presto Engineering

We need to make sure that the testability has also been designed to be functional structurally in this mode. In addition, sub-threshold voltage operation must account for non-linear transistor characteristics and the strong impact of local process variation, for which the conventional testability arsenal is still very poor. Automotive screening used low voltage operation (VLV) to detect latent defects, but at very low voltage close to the transistor threshold, digital becomes analog, and therefore if the usual concept still works for defect detection, functional test and @speed tests require additional expertise to be both meaningful and efficient from a test coverage perspective.

Korczynski:  Do we have sufficient specifications within “5G” to handle IoT device interoperability for all market segments?

Rajeev Rajan, Vice President of Internet of Things (IoT) at GLOBALFOUNDRIES

The estimated timeline for standardization availability of 5G is around 2020. 5G is being designed keeping three classes of applications in mind:  Enhanced Mobile Broadband, Massive IoT, and Mission-Critical Control. Specifically for IoT, the focus is on efficient, low-cost communication with deep coverage. We will start to see early 5G technologies start to appear around 2018, and device connectivity,

interoperability and marshaling the data they generate that can apply to multiple IoT sub-segments and markets is still very much in development.

Korczynski:  Will the 1st-generation of IoT devices likely include wide varieties of solution for different market-segments such as industrial vs. retail vs. consumer, or will most device use similar form-factors and underlying technologies?

Rajeev Rajan, Vice President of Internet of Things (IoT) at GLOBALFOUNDRIES

If we use CES 2016 as a showcase, we are seeing IoT “Things” that are becoming use-case or application-centric as they apply to specific sub-segments such as Connected Home, Automotive, Medical, Security, etc. There is definitely more variety on the consumer front vs. industrial. Vendors / OEMs / System houses are differentiating at the user-interface design and form-factor levels while the “under-the-hood” IC capabilities and component technologies that provide the atomic intelligence are fairly common. ​

Steve Carlson, product management group director, Cadence

Right now it seems like everyone is swinging for the fence. Everyone wants the home-run product that will reach a billion devices sold. Generality generally leads to sub-optimality, so a single device usually fails to meet the needs and expectations of many. Devices that are optimized for more specific use cases and elements of purchasing criteria will win out. The question of interface is an interesting one.

Korczynski:  Will there be different product life-cycles for different IoT market-segments, such as 1-3 years for consumer but 5-10 years for industrial?

Rajeev Rajan, Vice President of Internet of Things (IoT) at GLOBALFOUNDRIES

That certainly seems to be the case. According to Gartner’s market analysis for IoT, Consumer is expected to grow at a faster pace in terms of units compared to Enterprise, while Enterprise is expected to lead in revenue. Also the churn-cycle in Consumer is higher / faster compared to Enterprise. Today’s wearables or smart-phones are good reference examples. This will however vary by the type of “Thing” and sub-segment. For example, you expect to have your smart refrigerator for a longer time period compared to smart clothing or eyewear. As ASPs of the “Things”come down over time and new classes of products such as disposables hit the market, we can expect even larger volumes.​

Jon Lanson, vice president worldwide sales & marketing, Presto Engineering

The market segments continue to be driven by the same use cases. In consumer wearables, short cycles are linked to fashion trends and rapid obsolescence, where consumer home use has longer cycles closer to industrial market requirements. We believe that the lifecycle norms will hold true for IoT devices.

Korczynski:  For the IoT application of infrastructure monitoring (e.g. bridges, pipelines, etc.) long-term (10-20 year) reliability will be essential, while consumer applications may be best served by 3-5 year reliability devices which cost less; how well can we quantify the trade-off between cost and chip reliability?

Steve Carlson, product management group director, Cadence

Conceptually we know very well how to make devices more reliable. We can lower current densities with bigger wires, we can run at cooler temperatures, and so on.  The difficulty is always in finding optimality for a given criterion across the, for practical purposes, infinite tradeoffs to be made.

Korczynski:  Why is the talk of IoT not just another “Dot Com” hype cycle?

Rajeev Rajan, Vice President of Internet of Things (IoT) at GLOBALFOUNDRIES

​​I participated in a panel at SEMICON China in Shanghai last month that discussed a similar question. If we think of IoT as a “brand new thing” (no pun intended), then we can think of it as hype. However if we look at the IoT as as set of use-cases that can take advantage of an evolution of Machine-to-Machine (M2M) going towards broader connectivity, huge amounts of data generated and exchanged, and a generational increase in internet and communication network bandwidths (i.e. 5G), then it seems a more down-to-earth technological progression.

Nicolas Williams, product marketing manager, Mentor Graphics

Unlike the Dot Com hype, which was built upon hope and dreams of future solutions that may or may not have been based in reality, IoT is real business. For example, in a 2016 IC Insights report, we see that last year $63.4 billion in revenue was generated for IoT systems and the market is growing at about 20% CAGR. This same report also shows IoT semiconductor sales of over $15 billion in 2015 with a CAGR of 21.1%.

Jon Lanson, vice president worldwide sales & marketing, Presto Engineering

It is the investment needed up front to create sensing agents and an infrastructure for the hardware foundation of the IoT that will lead to big data and ultimately value creation.

Steve Carlson, product management group director, Cadence

There will be plenty of hype cycles for products and product categories along the way. However, the foundational shift of the connection of things is a diode through which civilization will only pass through in one direction.

IoT Demands Part 1: EDA and Fab Nodes

Thursday, April 14th, 2016

The Internet-of-Things (IoT) is expected to add new sensing and communications to improve the functionality of all manner of things in the world:  bridges sensing and reporting when repairs are needed, parts automatically informing where they are in storage and transport, human health monitoring, etc. Solid-state and semiconducting materials for new integrated circuits (IC) intended for ubiquitous IoT applications will have to be assembled at low-cost and small-size in High Volume Manufacturing (HVM). Micro-Electro-Mechanical Systems (MEMS) and other sensors are being combined with Radio-Frequency (RF) ICs in miniaturized packages for the first wave of growth in major sub-markets.

To meet the anticipated needs of the different IoT application spaces, SemiMD asked leading companies within critical industry segments about the state of technology preparedness:

*  Commercial IC HVM – GLOBALFOUNDRIES,

*  Electronic Design Automation (EDA) – Cadence and Mentor Graphics,

*  IC and complex system test – Presto Engineering.

Korczynski:  Today, ICs for IoT applications typically use 45nm/65nm-node which are “Node -3″ (N-3) compared to sub-20nm-node chips in HVM. Five years from now, when the bleeding-edge will use 10nm node technology, will IoT chips still use N-3 of 28nm-node (considered a “long-lived node”) or will 45nm-node remain the likely sweet-spot of price:performance?

Timothy Dry, product marketing manager, GLOBALFOUNDRIES

In 5 years time, there will be a spread of technology solutions addressing low, middle, and high ends of IoT applications. At the low end, IoT end nodes for applications like connected smoke

detectors, security sensors will be at 55, 40nm ULP and ULL for lowest system power, and low cost. These applications will be typically served by MCUs <50DMIPs. Integrated radios (BLE, 802.15.4), security, Power Management Unit (PMU), and eFlash or MRAM will be common features. Connected LED lighting is forecasted to be a high volume IoT application. The LED drivers will use BCD extensions of 130nm—40nm—that can also support the radio and protocol-MCU with Flash.

In the mid-range, applications like smart-meters and fitness/medical monitoring will need systems that have more processing power <300DMIPS. These products will be implemented in 40nm, 28nm and GLOBALFOUNDRIES’ new 22nm FDSOI technology that uses software-controlled body-biasing to tune SoC operation for lowest dynamic power. Multiple wireless (BLE/802.15.4, WiFi, LPWAN) and wired connectivity (Ethernet, PLC) protocols with security will be integrated for gateway products.

High-end products like smart-watches, learning thermostats, home security/monitoring cameras, and drones will require MPU-class IC products (~2000DMIPs) and run high-order operating systems (e.g. Linux, Android). These products will be made in leading-edge nodes starting at 22FDX, 14FF and migrating to 7FF and beyond. Design for lowest dynamic power for longest battery life will be the key driver, and these products typically require human machine Interface (HMI) with animated graphics on a high resolution displays. Connectivity will include BLE, WiFi and cellular with strong security.

Steve Carlson, product management group director, Cadence

We have seen recent announcements of IoT targeted devices at 14nm. The value created by Moore’s Law integration should hold, and with that, there will be inherent advantages to those who leverage next generation process nodes. Still, other product categories may reach functionality saturation points where there is simply no more value obtained by adding more capability. We anticipate that there will be more “live” process nodes than ever in history.

Jon Lanson, vice president worldwide sales & marketing, Presto Engineering

It is fair to say that most IoT devices will be a heterogeneous aggregation of analog functions rather than high power digital processors. Therefore, and by similarity with Bluetooth and RFID devices, 90nm and 65nm will remain the mainstream nodes for many sub-vertical markets, enabling the integration of RF and analog front-end functions with digital gate density. By default, sensors will stay out of the monolithic path for both design and cost reasons. The best answer would be that the IoT ASIC will follow eventually the same scaling as the MCU products, with embedded non-volatile memories, which today is 55-40nm centric and will move to 28nm with industry maturity and volumes.

Korczynski:  If most IoT devices will include some manner of sensor which must be integrated with CMOS logic and memory, then do we need new capabilities in EDA-flows and burn-in/test protocols to ensure meeting time-to-market goals?

Nicolas Williams, product marketing manager, Mentor Graphics

If we define a typical IoT device as a product that contains a MEMS sensor, A/D, digital processing, and a RF-connection to the internet, we can see that the fundamental challenge of IoT design is that teams working on this product need to master the analog, digital, MEMS, and RF domains. Often, these four domains require different experience and knowledge and sometimes design in these domains is accomplished by separate teams. IoT design requires that all four domains are designed and work together, especially if they are going on the same die. Even if the components are targeting separate dice that will be bonded together, they still need to work together during the layout and verification process. Therefore, a unified design flow is required.

Stephen Pateras, product marketing director, Mentor Graphics

Being able to quickly debug and create test patterns for various embedded sensor IP can be addressed with the adoption of the new IEEE 1687 IP plug-and-play standard. If a sensor IP block’s digital interface adheres to the standard, then any vendor-provided data required to initialize or operate the embedded sensor can be easily and quickly mapped to chip pins. Data sequences for multiple sensor IP blocks can also be merged to create optimized sequences that will minimize debug and test times.

Jon Lanson, vice president worldwide sales & marketing, Presto Engineering

From a testing standpoint, widely used ATEs are generally focused on a few purposes, but don’t necessarily cover all elements in a system. We think that IoT devices are likely to require complex testing flows using multiple ATEs to assure adequate coverage. This is likely to prevail for some time as short run volumes characteristic of IoT demands are unlikely to drive ATE suppliers to invest R&D dollars in creating new purpose-built machines.

Korczynski:  For the EDA of IoT devices, can all sensors be modeled as analog inputs within established flows or do we need new modeling capability at the circuit level?

Steve Carlson, product management group director, Cadence

Typically, the interface to the physical world has been partitioned at the electrical boundary. But as more mechanical and electro-mechanical sensors are more deeply integrated, there has been growing value in co-design, co-analysis, and co-optimization. We should see more multi-domain analysis over time.

Nicolas Williams, product marketing manager, Mentor Graphics

Designers of IoT devices that contain MEMS sensors need quality models in order to simulate their behavior under physical conditions such as motion and temperature. Unlike CMOS IC design, there are few standardized MEMS models for system-level simulation. State of the art MEMS modeling requires automatic generation of behavioral models based on the results of Finite Element Analysis (FEA) using reduced-order modeling (ROM). ROM is a numerical methodology that reduces the analysis results to create Verilog-A models for use in AMS simulations for co-simulation of the MEMS device in the context of the IoT system.

Mentor Graphics U2U Meeting April 26 in Santa Clara

Monday, April 11th, 2016

thumbnail

Mentor Graphics’ User2User meeting will be held in Santa Clara on April 26, 2016. The meeting is a highly interactive, in-depth technical conference focused on real world experiences using Mentor tools to design leading-edge products.

Admission and parking for User2User is free and includes all technical sessions, lunch and a networking reception at the end of the day. Interested parties can register on-line in advance.

Wally Rhines, Chairman and CEO of Mentor Graphics, will kick things off at 9:00am with a keynote talk on “Merger Mania.“ Wally notes that in 2015, the transaction value of semiconductor mergers was at an all-time historic high.  What is much more remarkable is that the average size of the merging companies is five times as large as in the past five years, he said. This major change in the structure of the semiconductor industry suggests that there will be changes that affect everything from how we define and design products to how efficiently we develop and manufacture them. Dr. Rhines will examine the data and provide conclusions and predictions.

He will be followed by another keynote talk at 10:00 by Zach Shelby, VP of Marketing for the Internet of Things at ARM. Zach was co-founder of Sensinode, where he was CEO, CTO and Chief Nerd for the ground-breaking company before its acquisition by ARM. Before starting Sensinode, Zach led wireless networking research at the Centre for Wireless Communications and at the Technical Research Center of Finland.

After user sessions and lunch, a panel will convene at 1:00pm to address the topic “Ripple or Tidal Wave: What’s driving the next wave of innovation and semiconductor growth?” Technology innovation was once fueled by the personal computer, communications, and mobile devices. Large capital investment and startup funding was rewarded with market growth and increased silicon shipments. Things are certainly consolidating, perhaps slowing down in the semiconductor market, so what’s going to drive the next wave of growth?  What types of designs will be staffed and funded? Is it IoT?  Wearables?  Automotive?  Experts will address these and other questions and examine what is driving growth and what innovation is yet to come.

Attendees can pick from nine technical tracks focused on AMS Verification, Calibre I and II, Emulation, Functional Verification, High Speed, IC Digital Implementation, PCB Flow, and Silicon Test & Yield Solutions. You’ll hear cases studies directly from users and also updates from Mentor Graphics experts.

These user sessions will be held at 11:10-12:00am, 2:00-2:50pm and 3:10-5:00pm.

A few of the highlights:

  • Oracle’s use of advanced fill techniques for improving manufacturing yield
  • How Xilinx built a custom ESD verification methodology on the Calibre platform
  • Qualcomm used emulation for better RTL design exploration for power, leading to more accurate power analysis and sign-off at the gate level
  • Micron’s experience with emulation, a full environment for debug of SSD controller designs, plus future plans for emulation
  • Microsoft use of portable stimulus to increase productivity, automate the creation of high-quality stimulus, and increase design quality
  • Formal verification at MicroSemi to create a rigorous, pre-code check-in review process that prevents bugs from infecting the master RTL
  • A methodology for modeling, simulation of highly integrated multi-die package designs at SanDisk
  • How Samsung and nVidia use new Automatic RTL Floorplanning capabilities on their advanced SoC designs
  • Structure test at AMD: traditional ATPG and Cell-Aware ATPG flows, as well as verification flows and enhancements

Other users presenting include experts from Towerjazz, Broadcom, GLOBALFOUNDRIES, Silicon Creations, MaxLinear, Silicon Labs, Marvell, HiSilicon, Qualcomm, Soft Machines, Agilent, Samtec, Honewell, ST Microelectronics, SHLC, ViaSat, Optimum, NXP, ON Semiconductor and MCD.

The day winds up with a closing session and networking reception from 5:00-6:00pm.

Registration is from 8:00-9:00am in the morning.

Goodbye, EDAC; Hello, ESD Alliance

Friday, April 1st, 2016

thumbnail

By Jeff Dorsch, Contributing Editor

The Electronic Design Automation Consortium (EDAC) is no more. The industry organization, founded in 1989, is changing its name to the Electronic System Design Alliance, or ESD Alliance.

The name change is being accompanied by an expansion of the organization’s charter. Having taken on semiconductor intellectual property several years ago, the ESD Alliance will also address advanced packaging and embedded software, according to Robert Smith, who took over last year as executive director of EDAC. The ESD Alliance will also welcome service companies that offer design know-how and resources.

The alliance’s launch was marked by an evening event on Wednesday (March 30) at the SEMI headquarters in San Jose, Calif., where the ESD Alliance has its offices. In attendance at the social gathering were several EDAC directors, including Simon Segars, chief executive officer of ARM Holdings; Wally Rhines, chairman and CEO of Mentor Graphics; Lip-Bu Tan, president and CEO of Cadence Design Systems; and Aart de Geus, chairman and co-CEO of Synopsys.

“We’re part of this large ecosystem,” Bob Smith said Wednesday evening, adding, “Semiconductors – they need design.” He recognized by name many of the people involved in EDAC and now the ESD Alliance.

A slide presentation at the event began with “Kingdom of Rain,” by The The, segueing to “Love Shack” by the B-52’s – two songs dating to 1989, the year EDAC was formed. That also was the year Taylor Swift was born, one slide noted.

In 2016, marked musically by Mark Ronson’s “Uptown Funk” in the slide show, the ESD Alliance is taking the place of the EDA Consortium.

Mentor Graphics Enhances Support for TSMC 7nm Design Starts and 10nm Production

Thursday, March 17th, 2016

Mentor Graphics Corporation (NASDAQ: MENT) today announced further enhancements and optimizations to the Calibre® platform and Analog FastSPICE™ (AFS) platform by completing TSMC 10nm FinFET V1.0 certification. In addition, the Calibre and Analog FastSPICE platforms are ready for early design starts and IP design on TSMC’s 7nm FinFET process based on the most current Design Rule Manual (DRM) and SPICE model.

To help mutual customers prepare their designs for advanced manufacturing processes, Mentor has made improvements for 10nm physical verification, accelerating the runtime of the Calibre nmDRC™ sign-off tool compared to the tool’s runtime when it was initially certified for required 10nm accuracy last year. New device parameters of the 10nm process are supported in the Calibre nmLVS™ tool for more accurate SPICE models and self-heating simulation. Mentor has also enhanced the parasitic accuracy in the Calibre xACT™ solution, and is actively improving layout parasitic extraction flow to meet 10nm requirements.

The Calibre platform also helps designers improve design reliability and manufacturability. The TSMC reliability offering leverages the Calibre PERC™ reliability verification solution, now with enhanced techniques for 10nm resistance and current density checking. For design for manufacturing (DFM), Mentor added color-aware fill and more sophisticated alignment and spacing rules to the SmartFill feature of the Calibre YieldEnhancer tool. Mentor also optimized the Calibre DesignREV™ chip finishing tool, the Calibre RVE™ results viewer, and the Calibre RealTime interface to give designers easier integration and debugging capabilities for multi-patterning, layout vs. schematic (LVS) comparison, and electrical rule checking (ERC) and reliability verification.

Mentor and TSMC are now collaborating on bringing the Calibre platform’s broad capabilities to the 7nm FinFET process. The Calibre nmDRC and Calibre nmLVS tools are already certified for customers’ early design starts. TSMC and Mentor are expanding use of the SmartFill functionality and Calibre multi-patterning capabilities to support the technology requirements of 7nm.

For fast, accurate circuit simulation, TSMC certified the AFS platform, including the AFS Mega circuit simulator, for 10nm V1.0. The AFS platform is also certified for the latest version of the 7nm DRM and SPICE for early design starts.

The Mentor place-and-route platform—including the Olympus-SoC™ system—has been enhanced to support advanced design rules at 10nm, and Mentor is optimizing its correlation with sign-off extraction and static timing analysis tools. This collaboration has also been extended to 7nm.

“We continue to collaborate with Mentor Graphics to provide design solutions and services that will help our mutual customers become successful with their 7nm designs,” said Suk Lee, TSMC senior director, Design Infrastructure Marketing Division. “Working together, we are also enabling the full production release of our 10nm technology design support.”

“To get the world’s most advanced processes into the hands of today’s leading SoC designers requires intense collaboration between the foundry and the EDA supplier,” said Joe Sawicki, vice president and general manager of Mentor Graphics Design-to-Silicon Division. “We’re honored that TSMC continues to leverage the proven quality, performance and breadth of Mentor platforms in its ecosystem strategy for the future.”

Next Page »