Part of the  

Solid State Technology

  and   

The Confab

  Network

About  |  Contact

Posts Tagged ‘logic process’

Companies Ready Cobalt for MOL, Gate Fill

Thursday, December 21st, 2017

thumbnail

By Dave Lammers

Cobalt for middle-of-the-line and trench contacts emerged at the International Electron Devices Meeting, as Intel, GlobalFoundries, and Applied Materials discussed how to best take advantage of cobalt’s properties.

For its forthcoming 10nm logic process, Intel Corp. used cobalt for several of the lower metal levels, including a cobalt fill at the trench contacts and cobalt M0 and M1 wiring levels. The result was much-improved resistivity and reliability, compared with the traditional metallization at those levels.

Cobalt was used for the local interconnects of the Intel 10nm process, improving line resistance by 60 percent. (Source: Intel)

Chris Auth, director of logic technology at Intel’s Portland Technology Center, said the contacted line resistance “provides a good indicator of the benefits of cobalt versus tungsten,” with a 60 percent reduction in line resistance and a 1.5X reduction in contact resistance.

While cobalt was used for the local interconnects, the upper 10 metal layers were copper, with a cobalt cap used for layers M2-M5 to provide a 50X improvement in electro-migration. Intel continued to use tungsten for the gate fill.

John Pellerin, a vice president at GlobalFoundries who directs global research and development, said GlobalFoundries decided that for its 7nm logic technology, ramping in mid-2018, it would replace tungsten with cobalt at the trench contact level, which is considered the first level of the middle-of-the-line (MOL).

“We are evaluating it for implementation into the next level of contact above that. Cobalt trench level contacts are process of record (POR) for the 7nm technology,” Pellerin said in an interview at the 2017 IEDM, held Dec. 2-6 in San Francisco.

High performance logic often involves four-fin logic cells to drive the maximum amount of current from the largest transistor width. “You have to get that current out of the transistor. That is where the MOL comes into play. Junction and MOL resistance optimization is key to taking advantage of a four-fin footprint, and it takes a multi-front optimization to take advantage of that equation.

Pellerin said the biggest challenge with tungsten trench contacts is that the CVD process tends to leave a seam void. “We are always fighting seam voids. With cobalt deposition we get an intrinsic resistance improvement, and don’t get seam voids by pushing tungsten down in there,” Pellerin said.

Tighter Metal Pitches

Scotten Jones, president of consultancy IC Knowledge (Boston), said semiconductor vendors will introduce cobalt when it makes sense. Because it is a new material, requiring considerable costs prior to insertion, companies will use it when they need it.

“Global has trench contacts, while Intel uses cobalt at three levels. But the reason is that Intel has a 36nm minimum metal pitch with its 10nm process, while Global is at 40nm with its 7nm process. It is only at the point where the line gets narrow enough that cobalt starts to make sense.”

Applied Cobalt Solutions

As cobalt begins to replace tungsten at the smaller-dimension interconnect layers, Applied Materials is readying process flows and E-beam inspection solutions optimized for cobalt.

Namsung Kim, senior director of engineering management at Applied Materials, said cobalt has a bulk resistivity that is similar to tungsten, but the barrier thickness required for tungsten at leading-edge transistors is swinging the advantage to cobalt as dimensions shrink.

Line resistance probability plot of cobalt versus tungsten at 12nm critical dimensions. (Source: Applied Materials)

“Compared with tungsten, cobalt has a very thin barrier thickness, so you can fill up with more material. At our Maydan Technology Center, we’ve developed a reflow process for cobalt that is unique,” Kim said. The cobalt reflow process uses an annealing step to create larger cobalt grain sizes, reducing the resistance. And because there is no source of fluorine in the cobalt deposition steps, a thin barrier layer can suffice.

At IEDM, Naomi Yoshida, a distinguished member of the technical staff at Applied, presented a paper describing Applied’s research using cobalt to fill a 5nm-logic-generation replacement metal gate (RMG). The fill is deposited above the high-k dielectric and work function metals, and at the 5nm node and beyond there is precious little room for the gap fill metal.

Yoshida said modern transistors use multiple layers of work-function metals to control threshold voltages, with high-performance logic requiring low Vt’s and IoT devices requiring relatively high Vt’s. After the different work function layers are deposited, the fill material is deposited.

At the 5nm node, Applied Materials estimates that the contacted poly pitch (CPP) will shrink to about 42nm, while the gate length (Lg) will be less than 12nm. “There is very limited space for the fill materials, so customers need a more conductive metal in a limited space. That is the major challenge,” Yoshida said in an interview at the IEDM.

Work Function Maintained

Naomi Yoshida: room for gate fill disappearing

The Applied R&D work showed that if the barrier layer for a tungsten fill is reduced too much, to a 2nm or 3nm TiN layer for example, the effective work function (eWF) degrades by as much as 500mV eWF and the total gate conductance suffers. With the CVD process used to deposit a tungsten RMG fill, there was “significant fluorine diffusion” into the work function metal layer in the case of a 2nm TiN barrier.

By contrast, the cobalt fill maintained the NMOS band-edge eWF with the same 2nm TiN barrier.

Gradually, cobalt will be adopted more widely for the contacts, interconnects, and RMG gate fill steps. “It is time to think about how to achieve more conductance in the gate material. Previously, people said there was a negligible contribution from the gate material, but now with the smaller gates at 5nm, gate fill metal makes a huge contribution to resistance, and barrier thickness reduction is important as well,” Yoshida said.

E-beam Inspection

Nicolas Breil: E-beam void inspection useful for cobalt contacts

Applied Materials also has developed an e-beam inspection solution, ProVision, first introduced in mid-2016, and has optimized it for inspecting cobalt voids. Nicolas Breil, a director in the company’s contact module division, said semiconductor R&D organizations are busy developing cobalt contact solutions, optimizing the deposition, CMP, and other steps. “For such a dense and critical level as the contact, it always needs very careful engineering. They key is to get results as fast as possible, but being fast can be very expensive.”

Amir Wachs, business development manager at Applied’s process diagnostics and control business unit in Rehovat, Israel, said the ProVision e-beam inspection system has a resolution of 1nm, at 10,000-20,000 locations per hour, taking a few hundred measurements on each field of view.

“Voids form when there are adhesion issues between the cobalt and TiN. One of the key issues is the correct engineering of the Ti nitride and PVD cobalt and CVD cobalt. To detect embedded voids requires a TEM inspection, but then customers get very limited statistics. There might be a billion contacts per chip, and with conventional TEM you might get to inspect two.”

The ProVision system speeds up the feedback loop between inspection and co-optimization. “Customers can assess the validity of the optimization. With other inspection methods, co-optimization might take five days to three weeks. With this type of analysis, using ProVision, customers can do tests early in the flow and validate their co-optimization within a few hours,” Wachs said.


Extension Media websites place cookies on your device to give you the best user experience. By using our websites, you agree to placement of these cookies and to our Privacy Policy. Please click here to accept.