Part of the  

Solid State Technology


The Confab


About  |  Contact

Posts Tagged ‘LELE’

Many Mixes to Match Litho Apps

Thursday, March 3rd, 2016


By Ed Korczynski, Sr. Technical Editor

“Mix and Match” has long been a mantra for lithographers in the deep-sub-wavelength era of IC device manufacturing. In general, forming patterns with resolution at minimum pitch as small as 1/4 the wavelength of light can be done using off-axis illumination (OAI) through reticle enhancement techniques (RET) on masks, using optical proximity correction (OPC) perhaps derived from inverse lithography technology (ILT). Lithographers can form 40-45nm wide lines and spaces at the same half-pitch using 193nm light (from ArF lasers) in a single exposure.

Figure 1 shows that application-specific tri-layer photoresists are used to reach the minimum resolution of 193nm-immersion (193i) steppers in a single exposure. Tighter half-pitch features can be created using all manner of multi-patterning processes, including Litho-Etch-Litho-Etch (LELE or LE2) using two masks for a single layer or Self-Aligned Double Patterning (SADP) using sidewall spacers to accomplish pitch-splitting. SADP has been used in high volume manufacturing (HVM) of logic and memory ICs for many years now, and Self-Aligned Quadruple Patterning (SAQP) has been used in HVM by at least one leading memory fab.

Fig.1: Basic tri-layer resist (TLR) technology uses thin Photoresist over silicon-containing Hard-Mask over Spin-On Carbon (SOC), for patterning critical layers of advanced ICs. (Source: Brewer Science)

Next-Generation Lithography (NGL) generally refers to any post-optical technology with at least some unique niche patterning capability of interest to IC fabs:  Extreme Ultra-Violet (EUV), Directed Self-Assembly (DSA), and Nano-Imprint Lithography (NIL). Though proponents of each NGL have dutifully shown capabilities for targeted mask layers for logic or memory, the capabilities of ArF dry and immersion (ArFi) scanners to process >250 wafers/hour with high uptime dominates the economics of HVM lithography.

The world’s leading lithographers gather each year in San Jose, California at SPIE’s Advanced Lithography conference to discuss how to extend optical lithography. So of all the NGL technologies, which will win out in the end?

It is looking most likely that the answer is “all of the above.” EUV and NIL could be used for single layers. For other unique patterning application, ArF/ArFi steppers will be used to create a basic grid/template which will be cut/trimmed using one of the available NGL. Each mask layer in an advanced fab will need application-specific patterning integration, and one of the rare commonalities between all integrated litho modules is the overwhelming need to improve pattern overlay performance.

Naga Chandrasekaran, Micron Corp. vice president of Process R&D, provided a fantastic overview of the patterning requirements for advanced memory chips in a presentation during Nikon’s LithoVision technical symposium held February 21st in San Jose, California prior to the start of SPIE-AL. While resolution improvements are always desired, in the mix-and-match era the greatest challenges involve pattern overlay issues. “In high volume manufacturing, every nanometer variation translates into yield loss, so what is the best overlay that we can deliver as a holistic solution not just considering stepper resolution?” asks Chandrasekaran. “We should talk about cost per nanometer overlay improvement.”

Extreme Ultra-Violet (EUV)

As touted by ASML at SPIE-AL, the brightness and stability and availability of tin-plasma EUV sources continues to improve to 200W in the lab “for one hour, with full dose control,” according to Michael Lercel, ASML’s director of strategic marketing. ASML’s new TWINSCAN NXE:3350B EUVL scanners are now being shipped with 125W power sources, and Intel and Samsung Electronics reported run their EUV power sources at 80W over extended periods.

During Nikon’s LithoVision event, Mark Phillips, Intel Fellow and Director of Lithography Technology Development for Logic, summarized recent progress of EUVL technology:  ~500 wafers-per-day is now standard, and ~1000 wafer-per-day can sometimes happen. However, since grids can be made with ArFi for 1/3 the cost of EUVL even assuming best productivity for the latter, ArFi multi-patterning will continue to be used for most layers. “Resolution is not the only challenge,” reminded Phillips. “Total edge-placement-error in patterning is the biggest challenge to device scaling, and this limit comes before the device physics limit.”

Directed Self-Assembly (DSA)

DSA seems most suited for patterning the periodic 2D arrays used in memory chips such as DRAMs. “Virtual fabrication using directed self-assembly for process optimization in a 14nm DRAM node” was the title of a presentation at SPIE-AL by researchers from Coventor, in which DSA compared favorably to SAQP.

Imec presented electrical results of DSA-formed vias, providing insight on DSA processing variations altering device results. In an exclusive interview with Solid State Technology and SemiMD, imec’s Advanced Patterning Department Director Greg McIntyre reminds us that DSA could save one mask in the patterning of vias which can all be combined into doublets/triplets, since two masks would otherwise be needed to use 193i to do LELE for such a via array. “There have been a lot of patterning tricks developed over the last few years to be able to reduce variability another few nanometers. So all sorts of self-alignments.”

While DSA can be used for shrinking vias that are not doubled/tripled, there are commercially proven spin-on shrink materials that cost much less to use as shown by Kaveri Jain and Scott Light from Micron in their SPIE-AL presentation, “Fundamental characterization of shrink techniques on negative-tone development based dense contact holes.” Chemical shrink processes primarily require control over times, temperatures, and ambients inside a litho track tool to be able repeatably shrink contact hole diameters by 15-25 nm.

Nano-Imprint Litho (NIL)

For advanced IC fab applications, the many different options for NIL technology have been narrowed to just one for IC HVM. The step-and-pattern technology that had been developed and trademarked as “Jet and Flash Imprint Lithography” or “J-FIL” by, has been commercialized for HVM by Canon NanoTechnologies, formerly known as Molecular Imprints. Canon shows improvements in the NIL mask-replication process, since each production mask will need to be replicated from a written master. To use NIL in HVM, mask image placement errors from replication will have to be reduced to ~1nm., while the currently available replication tool is reportedly capable of 2-3nm (3 sigma).

Figure 2 shows normalized costs modeled to produce 15nm half-pitch lines/spaces for different lithography technologies, assuming 125 wph for a single EUV stepper and 60 wph for a cluster of 4 NIL tools. Key to throughput is fast filling of the 26mmx33mm mold nano-cavities by the liquid resist, and proper jetting of resist drops over a thin adhesion layer enables filling times less than 1 second.

Fig.2: Relative estimated costs to pattern 15nm half-pitch lines/spaces for different lithography technologies, assuming 125 wph for a single EUV stepper and 60 wph for a cluster of 4 NIL tools. (Source: Canon)

Researchers from Toshiba and SK Hynix described evaluation results of a long-run defect test of NIL using the Canon FPA-1100 NZ2 pilot production tool, capable of 10 wafers per hour and 8nm overlay, in a presentation at SPIE-AL titled, “NIL defect performance toward high-volume mass production.” The team categorized defects that must be minimized into fundamentally different categories—template, non-filling, separation-related, and pattern collapse—and determined parallel paths to defect reduction to allow for using NIL in HVM of memory chips with <20nm half-pitch features.


Double Patterning From Design Enablement To Verification

Thursday, December 13th, 2012

Litho-etch-litho-etch (LELE) is the double patterning (DP) technology of choice for 20 nm contact, via, and lower metal layers. We discuss the unique design and process characteristics of LELE DP, the challenges they present, and various solutions, including:

  • DP design methodologies, current DP conflict feedback mechanisms, and how they can help designers identify and resolve conflicts.
  • Effects on place and route (P&R) and new reqirements for physical design.
  • Why LELE DP cuts and overlaps are critical to optical process correction (OPC).
  • Mask misalignment and image rounding as new verification considerations.

To download this white paper, click here.