Part of the  

Solid State Technology

  and   

The Confab

  Network

About  |  Contact

Posts Tagged ‘Lam’

Mechanistic Modeling of Silicon ALE for FinFETs

Tuesday, April 25th, 2017

thumbnail

With billions of device features on the most advanced silicon CMOS ICs, the industry needs to be able to precisely etch atomic-scale features without over-etching. Atomic layer etching (ALE), can ideally remove uniform layers of material with consistent thickness in each cycle, and can improve uniformity, reduce damage, increase selectivity, and minimize aspect ratio dependent etching (ARDE) rates. Researchers Chad Huard et al. from the University of Michigan and Lam Research recently published “Atomic layer etching of 3D structures in silicon: Self-limiting and nonideal reactions” in the latest issue of the Journal of Vacuum Science & Technology A (http://dx.doi.org/10.1116/1.4979661). Proper control of sub-cycle pulse times is the key to preventing gas mixing that can degrade the fidelity of ALE.

The authors modeled non-idealities in the ALE of silicon using Ar/Cl2 plasmas:  passivation using Ar/Cl2 plasma resulting in a single layer of SiClx, followed by Ar-ion bombardment to remove the single passivated layer. Un-surprisingly, they found that ideal ALE requires self-limited processes during both steps. Decoupling passivation and etching allows for several advantages over continuous etching, including more ideal etch profiles, high selectivity, and low plasma-induced damage. Any continuous etching —when either or both process steps are not fully self-limited— can cause ARDE and surface roughness.

The gate etch in a finFET process requires that 3D corners be accurately resolved to maintain a uniform gate length along the height of the fin. In so doing, the roughness of the etch surface and the exact etch depth per cycle (EPC) are not as critical as the ability of ALE to be resistant to ARDE. The Figure shows that the geometry modeled was a periodic array of vertical crystalline silicon fins, each 10nm wide and 42nm high, set at a pitch of 42 nm. For continuous etching (a-c), simulations used a 70/30 mix of Ar/Cl gas and RF bias of 30V. Just before the etch-front touches the underlying SiO2 (a), the profile has tapered away from the trench sidewalls and the etch-front shows some micro-trenching produced by ions (or hot neutrals) specularly reflected from the tapered sidewalls. After a 25% over-etch (b), a significant amount of Si remains in the corners and on the sides of the fins. Even after an over-etch of 100% (c), Si still remains in the corners.

FIGURE CAPTION: Simulated profiles resulting from etching finFET gates with (a)–(c) a continuous etching process, or (d)–(f) an optimized ALE process. Time increases from left to right, and images represent equal over-etch (as a percentage of the time required to expose the bottom SiO2) not equal etch times. Times listed for the ALE process in (d)–(f) represent plasma-on, ignoring any purge or dwell times. (Source: J. Vac. Sci. Technol. A, Vol. 35, No. 3, May/Jun 2017)

In comparison, the ALE process (d-f) shows that after 25% over-etch (e) the bottom SiO2 surface would be almost completely cleared with minimal corner residues, and continuing to 100% over-etch results in little change to the profile. The ALE process times shown here do not include the gas purge and fill times between plasma pulses; to clear the feature using ALE required 200 pulses and assuming 5 seconds of purge time between each pulse results in a total process time of 15–20 min to clear the feature. This is a significant increase in total process time over the continuous etch (2 min).

One conclusion of this ALE modeling is that even small deviations from perfectly self-limited reactions significantly compromise the ideality of the ALE process. For example, having as little as 10 ppm Cl2 residual gas in the chamber during the ion bombardment phase produced non-idealities in the ALE. Introducing any source of continuous chemical etching into the ALE process leads to the onset of ARDE and roughening of the etch front. These trends have significant implications for both the design of specialized ALE chambers, and also for the use of ALE to control uniformity.

—E.K.

Multibeam Patents Direct Deposition & Direct Etch

Monday, November 14th, 2016

thumbnail

By Ed Korczynski, Sr. Technical Editor

Multibeam Corporation of Santa Clara, California recently announced that its e-beam patent portfolio—36 filed and 25 issued—now includes two innovations that leverage the precision placement of electrons on the wafer to activate chemical processes such as deposition and etch. As per the company’s name, multi-column parallel processing chambers will be used to target throughputs usable for commercial high-volume manufacturing (HVM) though the company does not yet have a released product. These new patents add to the company’s work in developing Complementary E-Beam Lithography (CEBL) to reduce litho cost, Direct Electron Writing (DEW) to enhance device security, and E-Beam Inspection (EBI) to speed defect detection and yield ramp.

The IC fab industry’s quest to miniaturize circuit features has already reached atomic scales, and the temperature and pressure ranges found on the surface of our planet make atoms want to move around. We are rapidly leaving the known era of deterministic manufacturing, and entering an era of stochastic manufacturing where nothing is completely determined because atomic placements and transistor characteristics vary within distributions. In this new era, we will not be able to guarantee that two adjacent transistors will function the same, which can lead to circuit failures. Something new is needed. Either we will have to use new circuit design approaches that require more chip area such as “self-healing” or extreme redundancy, or the world will have to inspect and repair transistors within the billions on every HVM chip.

In an exclusive interview with Solid State Technology, David K. Lam, Multibeam Chairman, said, “We provide a high-throughput platform that uses electron beams as an activation mechanism. Each electron-beam column integrates gas injectors, as well as sensors, which enable highly localized control of material removal and deposition. We can etch material in a precise location to a precise depth. Same with deposition.” Lam (Sc.D. MIT) was the founder and first CEO of Lam Research where he led development and market penetration of the IC fab industry’s first fully automated plasma etch system, and was inducted into the Silicon Valley Engineering Hall of Fame in 2013.

“Precision deposition using miniature-column charged particle beam arrays” (Patent #9,453,281) describes patterning of IC layers by either creating a pattern specified by the design layout database in its entirety or in a complementary fashion with other patterning processes. Reducing the total number of process steps and eliminating lithography steps in localized material addition has the dual benefit of reducing manufacturing cycle time and increasing yield by lowering the probability of defect introduction. Furthermore, highly localized, precision material deposition allows for controlled variation of deposition rate and enables creation of 3D structures such as finFETs and NanoWire (NW) arrays.

Deposition can be performed using one or more multi-column charged particle beam systems using chemical vapor deposition (CVD) alone or in concert with other deposition techniques. Direct deposition can be performed either sequentially or simultaneously by multiple columns in an array, and different columns can be configured and/or optimized to perform the same or different material depositions, or other processes such as inspection and metrology.

“Precision substrate material removal using miniature-column charged particle beam arrays” (Patent #9,466,464) describes localized etch using activation electrons directed according to the design layout database so that etch masks are no longer needed. Figure 1 shows that costs are reduced and edge placement accuracy is improved by eliminating or reducing errors associated with photomasks, litho steps, and hard masks. With highly localized process control, etch depths can vary to accommodate advanced 3D device structures.

Fig.1: Comparison of (LEFT) the many steps needed to etch ICs using conventional wafer processing and (RIGHT) the two simple steps needed to do direct etching. (Source: Multibeam)

“We aren’t inventing new etch chemistries, precursors or reactants,” explained Lam. “In direct etch, we leverage developments in reactive ion etching and atomic layer etch. In direct deposition, we leverage work in atomic layer deposition. Several research groups are also developing processes specifically for e-beam assisted etch and deposition.”

The company continues to invent new hardware, and the latest critical components are “kinetic lens” which are arrangements of smooth and rigid surfaces configured to reflect gas particles. When fixed in position with respect to a gas injector outflow opening, gas particles directed at the kinetic lens are collimated or redirected (e.g., “focused”) towards a wafer surface or a gas detector. Generally, surfaces of a kinetic lens can be thought of as similar to optical mirrors, but for gas particles. A kinetic lens can be used to improve localization on a wafer surface so as to increase partial pressure of an injected gas in a target area. A kinetic lens can also be used to increase specificity and collection rate for a gas detector within a target frame.

Complementary Lithography

Complementary lithography is a cost-effective variant of multi-patterning where some other patterning technology is used with 193nm ArF immersion (ArFi) to extend the resolution limit of the latter. The company’s Pilot™ CEBL Systems work in coordination with ArFi lithography to pattern cuts (of lines in a “1D lines-and-cuts” layout) and holes (i.e., contacts and vias) with no masks. These CEBL systems can seamlessly incorporate multicolumn EBI to accelerate HVM yield ramps, using feedback and feedforward as well as die-to-database comparison.

Figure 2 shows that “1D” refers to 1D gridded design rule. In a 1D layout, optical pattern design is restricted to lines running in a single direction, with features perpendicular to the 1D optical design formed in a complementary lithography step known as “cutting”. The complementary step can be performed using a charged particle beam lithography tool such as Multibeam’s array of electrostatically-controlled miniature electron beam columns. Use of electron beam lithography for this complementary process is also called complementary e-beam lithography, or CEBL. The company claims that low pattern-density layers such as for cuts, one multi-column chamber can provide 5 wafers-per-hour (wph) throughput.

Fig.2: Complementary E-Beam Lithography (CEBL) can be used to “cut” the lines within a 1D grid array previously formed using ArF-immersion (ArFi) optical steppers. (Source: Multibeam)

Direct deposition can be used to locally interconnect 1D lines produced by optical lithography. This is similar in design principle to complementary lithography, but without using a resist layer during the charged particle beam phase, and without many of the steps required when using a resist layer. In some applications, such as restoring interconnect continuity, the activation electrons are directed to repair defects that are detected during EBI.

—E.K.

3D-NAND Deposition and Etch Integration

Thursday, September 1st, 2016

thumbnail

By Ed Korczynski, Sr. Technical Editor

3D-NAND chips are in production or pilot-line manufacturing at all major memory manufacturers, and they are expected to rapidly replace most 2D-NAND chips in most applications due to lower costs and greater reliability. Unlike 2D-NAND which was enabled by lithography, 3D-NAND is deposition and etch enabled. “With 3D-NAND you’re talking about 40nm devices, while the most advanced 2D-NAND is running out of steam due to the limited countable number of stored electrons-per-cell, and in terms of the repeatability due to parasitics between adjacent cells,” reminded Harmeet Singh, corporate vice president of Lam Research in an exclusive interview with SemiMD to discuss the company’s presentation at the Flash Memory Summit 2016.

“We’re in an era where deposition and etch uniquely define the customer roadmap,” said Singh,“and we are the leading supplier in 3D-NAND deposition and etch.” Though each NAND manufacturer has different terminology for their unique 3D variant, from a manufacturing process integration perspective they all share similar challenges in the following simplified process sequences:

1)    Deposition of 32-64 pairs of blanket “mold stack” thin-films,

2)    Word-line hole etch through all layers and selective fill of NAND cell materials, and

3)    Formation of “staircase” contacts to each cell layer.

Each of these unique process modules is needed to form the 3D arrays of NVM cells.

For the “mold stack” deposition of blanket alternating layers, it is vital for the blanket PECVD to be defect-free since any defects are mirrored and magnified in upper-layers. All layers must also be stress-free since the stress in each deposited layer accumulates as strain in the underlying silicon wafer, and with over 32 layers the additive strain can easily warp wafers so much that lithographic overlay mismatch induces significant yield loss. Controlled-stress backside thin-film depositions can also be used to balance the stress of front-side films.

Hole Etch

“The difficult etch of the hole, the materials are different so the challenges is different,” commented Singh about the different types of 3D-NAND now being manufactured by leading fabs. “During this conference, one of our customer presented that they do not see the hole diameters shrinking, so at this point it appears to us that shrinking hole diameters will not happen until after the stacking in z-dimension reaches some limit.”

Tri-Layer Resist (TLR) stacks for the hole patterning allow for the amorphous carbon hardmask material to be tuned for maximum etch resistance without having to compromise the resolution of the photo-active layer needed for patterning. Carbon mask is over 3 microns thick and carbon-etching is usually responsive to temperature, so Lam’s latest wafer-chuck for etching features >100 temperature control zones. “This is an example of where Lam is using it’s processes expertise to optimize both the hardmask etch as well as the actual hole etch,” explained Singh.

Staircase Etch

The Figure shows a simplified cross-sectional schematic of how the unique “staircase” wordline contacts are cost-effectively manufactured. The established process of record (POR) for forming the “stairs” uses a single mask exposure of thick KrF photoresist—at 248nm wavelength—to etch 8 sets of stairs controlled by a precise resist trim. The trimming step controls the location of the steps such that they align with the contact mask, and so must be tightly controlled to minimize any misalignment yield loss.

A) Simplified cross-sectional schematic of the staircase etch for 3D-NAND contacts using thick photoresist, B) which allows for controlled resist trimming to expose the next “stair” such that C) successive trimming creates 8-16 steps from a single initial photomask exposure. (Source: Ed Korczynski)

Lam is working on ways to tighten the trimming etch uniformity such that 16 sets of stairs can be repeatably etched from a single KrF mask exposure. Halving the relative rate of vertical etch to lateral etch of the KrF resist allows for the same resist thickness to be used for double the number of etches, saving lithography cost. “We see an amazing future ahead because we are just at the beginning of this technology,” commented Singh.

—E.K.