Part of the  

Solid State Technology

  and   

The Confab

  Network

About  |  Contact

Posts Tagged ‘InvenSense’

InvenSense CEO touts the Internet of Sensors

Monday, November 23rd, 2015

By Jeff Dorsch, Contributing Editor

InvenSense president and chief executive officer Behrooz Abdi sees the Internet of Things as an Internet of Sensors, a theme he explored Tuesday afternoon (November 17) at the opening of the fourth annual InvenSense Developers Conference.

“To enable the Internet of Things, we need a community,” he told the developers in attendance. “How do we make this a much stronger community?”

InvenSense has a “very selfish” reason for supporting the 30,000 developers in that community, Abdi added. Many InvenSense developers of hardware and software applications spread out to many companies, he noted.

The company reported earlier this year that 78 percent of its fiscal 2015 revenue came from mobile sensors. Optical image stabilization accounted for 12 percent of the year’s revenue, while gaming and other applications represented 10 percent.

For its fiscal second quarter ended September 27, InvenSense’s IoT-related business accounted for 20 percent of revenue, “double what it was,” Abdi said.

In its history, InvenSense has seen many functions incorporated into smartphones, the CEO said. “The phone has become a mobile server,” he observed.

Abdi commented, “The road to the Internet of Sensors is fraught with many challenges. We’re really tackling a lot of things.”

InvenSense has reduced the typical time-to-market for new sensor products, especially with its new fingerprint sensor, Abdi asserted. The company has opened up its InvenSense Fabrication Platform to more parties in the interest of inspiring more designs incorporating InvenSense sensors, he said.

“We’re giving you a platform you can build from,” Abdi said.

Eitan Medina, InvenSense’s vice president of marketing and product development, revealed some of the company’s news on Tuesday, such as the new CoursaSports.com software-as-a-service, with a software development kit for sensor-assisted fitness tracking applications, and improvements in the graphical user interface of the company’s SensorStudio development tool and the InvenSense FireFly development kit, a sensor prototyping and development platform for IoT applications.

“Create your own custom sensors,” Medina urged. “Design your own sensor fusion.”

CoursaSports supports app development for the iOS, Android, and Android Wear operating systems, according to Medina.

InvenSense also announced it is partnering with Intrinsic-ID for the TrustedSensor offering, “enabling secure sensor-based systems,” Medina said.

The conference also heard from Amit Shah of Artiman Ventures. “What is IoT?” Shah asked rhetorically. “It sort of became a buzzword that means nothing.”

As a venture-capital firm, Artiman is interested in startups that can field a product or service within two years, Shah said.

“We’re focused on revenue models” when it comes to the Internet of Things and sensors, Shah said – specifically, health care and industrial uses. Artiman isn’t interested in areas that are “crowded” with startups, namely consumer wearables and robotics, he added.

InvenSense Developers Conference Tackles Sensor Security, New Technologies

Monday, November 23rd, 2015

By Jeff Dorsch, Contributing Editor

The second day of the InvenSense Developers Conference saw presenters get down to cases – use cases for sensors.

There were track sessions devoted to mobile technology and the Internet of Things, with the latter featuring presentations on industrial and automotive applications, smart homes and drones, smartphones and tablet computers, and wearable electronics. InvenSense partner companies had their own track on New Technologies, fitting into the conference’s “Internet of Sensors” theme.

The conference also featured two developer tracks in parallel, providing five InvenSense presentations on its FireFly hardware and software, SensorStudio, and other offerings.

One of the presentations that wrapped up the conference on Wednesday afternoon (November 18) was given by Pim Tuyls, chief executive officer of Intrinsic-ID, the Dutch company that worked with InvenSense to develop the TrustedSensor product, a secure sensor-based authentication system incorporating the FireFly system-on-a-chip device.

TrustedSensor will be shipped to alpha customers in the first quarter of 2016 and will go out to beta customers in the second quarter of next year, according to Tuyls. “This is real,” he said.

The Intrinsic-ID founder briefly reviewed the company’s history, to start. It was spun out of Royal Philips in 2008 and is an independent company with venture-capital funding, Tuyls noted.

Intrinsic-ID was founded to provide “cyber physical security based on physically unclonable function,” or PUF, Tuyls said. “We invented PUF,” he added. “It has been vetted by security labs and government agencies,” among other parties.

Taking “The Trusted Sensor” as his theme, the Intrinsic-ID CEO said, “Sensors are the first line of defense. You want to make sure you can provide a certain level of security.”

It is critical to achieve “the right balance” in designing, fabricating, and installing sensors, with security, flexibility, and low footprint among the key considerations, according to Tuyls.

While whimsically describing PUF as “a magic concept,” Tuyls noted, “Chips are physically unique,” with no two completely alike due to manufacturing processes.

PUF can “extract a crypto key from any device,” he added. “You can authenticate any device.”

Intrinsic-ID has tested the PUF technology with a wide variety of silicon foundries, Tuyls said – namely, Cypress Semiconductor, GlobalFoundries, IBM, Intel, Renesas Electronics, Samsung Electronics, Taiwan Semiconductor Manufacturing, and United Microelectronics. It has been implemented by Altera, Microsemi, NXP Semiconductors, Samsung, and Synopsys, he added, and process nodes ranging from 180 nanometers down to 14nm have been tested.

Tuyls concluded by emphasizing the importance of sensor security for the Internet of Things. “We should not wait; we should not try to save a few cents,” he said. “It is important, but it is hard.”

Earlier in the day, attendees heard from Sam Massih, InvenSense’s director of wearable sensors. “There’s a wearable solution for every part of the body,” he commented.

“Step count isn’t enough,” Massih said. “You need context for data.” He cited the example of a user who goes to the gym three times a week and spends an hour on the elliptical trainer machine for one hour on each visit.

“That’s data that can be monetized,” he said.

InvenSense announced last month that it would enter the market for automotive sensors. Amir Panush, the company’s head of automotive and IoT industrial, said in his presentation, “Sensors need to be smart enough.”

The megatrends in automotive electronics include the use of motion sensors for safety in advanced driver-assistance systems (ADAS), the smart connected car, and tough emission restrictions, according to Panush.

“We have signed a deal with a Tier One partner,” Panush said, meaning a leading automotive manufacturer, without identifying the company. “We are ramping up internal R&D in automotive.” InvenSense is presently opening design centers focusing on the $5 trillion automotive market, he added.

InvenSense was founded in 2003 and went public in 2011. The company posted revenue of $372 million in fiscal 2015 with a net loss of $1.08 million (primarily due to charging $10.55 million in interest expense against net income), after being profitable for the previous four years. InvenSense gets more than three-quarters of its revenue from mobile sensors and has a growing business in IoT sensors.

Customers in Asia accounted for 63 percent of the company’s fiscal 2015 revenue, according to InvenSense’s 10-K annual report. The company spent $90.6 million on research and development, representing about 24 percent of its net revenue.

GlobalFoundries and TSMC make nearly all of InvenSense’s wafers. Assembly packaging of its microelectromechanical system (MEMS) devices and sensors is outsourced to Advanced Semiconductor Engineering, Amkor Technology, Lingsen Precision Industries, and Siliconware Precision Industries.

The company had 644 employees as of March 29, 2015, with nearly half of them involved in R&D.

STMicroelectronics is InvenSense’s primary competitor for consumer motion sensors, the 10-K states, while the company also competes with Analog Devices, Epson Toyocom, Kionix, Knowles, Maxim Integrated Products, MEMSIC, Murata Manufacturing, Panasonic, Robert Bosch, and Sony.

Silicon Summit speakers look at the future of chip technology

Friday, April 17th, 2015
thumbnail

Gregg Bartlett

By Jeff Dorsch, Contributing Editor

Quick quiz: What topics do you think were discussed at length Wednesday at the Global Semiconductor Alliance’s Silicon Summit?

A. The Internet of Things.

B. Augmented reality and virtual reality.

C. Cute accessories for spring and summer looks.

The answers: A and B. C could be right if you count wearable electronics as “cute accessories.”

Wednesday’s forum at the Computer History Museum in Mountain View, Calif., not far from  Google’s headquarters, was dominated by talk of IoT, AR, VR, and (to a lesser extent) wearable devices.

Gregg Bartlett, senior vice president of the Product Management Group at GlobalFoundries, kicked off the morning sessions with a talk titled “IoT: A Silicon Perspective.” He said, “A lot of the work left in IoT is in the edge world.”

Bartlett noted, “A lot of the infrastructure is in place,” yet the lack of IoT standards is inhibiting development, he asserted.

“IoT demands the continuation of Moore’s Law,” Bartlett said, touting fully-depleted silicon-on-insulator technology as a cost-effective alternative to FinFET technology. FD-SOI “is the killer technology for IoT,” he added.

Next up was James Stansberry, senior vice president and general manager of IoT Products at Silicon Laboratories. Energy efficiency is crucial for IoT-related devices, which must be able to operate for 10 years with little or no external power, he said.

Bluetooth Smart, Thread, Wi-Fi, and ZigBee provide the connectivity in IoT networks, with a future role for Long-Term Evolution, according to Stansberry. He also played up the importance of integration in connected devices. “Nonvolatile memory has to go on the chip” for an IoT system-on-a-chip device, he said.

For 2015, Stansberry predicted a dramatic reduction in energy consumption for IoT devices; low-power connectivity standards will gain traction; and the emergence of more IoT SoCs.

Rahul Patel, Broadcom’s senior vice president and general manager of wireless connectivity, addressed health-care applications for the IoT. “Security is key,” he said. Reliability, interoperability, and compliance with government regulations are also required, Patel noted.

“My agenda is to scare everyone to death,” said Martin Scott, senior vice president and general manager of the Cryptography Research Division at Rambus. Cybersecurity with the IoT is causing much anxiety, he noted. “Silicon can come to the rescue again,” he said. “If your system relies on software, it’s hackable.”

To build trust in IoT devices and networks, the industry needs to turn to silicon-based security, according to Scott. “Silicon is the foundation of trusted services,” he concluded.

The second morning session was titled “The Future of Reality,” with presentations by Keith Witek, corporate vice president, Office of Corporate Strategy, Advanced Micro Devices; Mats Johansson, CEO of EON Reality; and Joerg Tewes, CEO of Avegant.

Augmented reality and virtual reality technology is “incredibly exciting,” Witek said. “I love this business.” He outlined four technical challenges for VR in the near future: Improving performance; ensuring low latency of images; high-quality consistency of media; and system-level advances. “Wireless has to improve,” Witek said.

VR is “starting to become a volume market,” Johansson said. What matters now is proceeding “from phone to dome,” where immersive experiences meet knowledge transfer, he added. Superdata, a market research firm, estimates there will be 11 million VR users by next year, according to Johansson.

Avegant had a successful Kickstarter campaign last year to fund its Glyph VR headset, with product delivery expected in late 2015, Tewes said. The Glyph has been in development for three years, he said, employing digital micromirror device technology, low-power light-emitting diodes, and latency of less than 12 microseconds to reduce or eliminate the nausea that some VR users have experienced, he said.

The afternoon session was devoted to “MEMS and Sensors, Shaping the Future of the IoT.” Attendees heard from Todd Miller, Microsystems Lab Manager at GE Global Research; Behrooz Abdi, president and CEO of InvenSense; Steve Pancoast, Atmel’s vice president of software and applications; and David Allan, president and chief operating officer of Virtuix.

Miller outlined the challenges for the industrial Internet – cybersecurity, interoperability, performance, and scale. “Open standards need to continue,” he said.

General Electric and other companies, including Intel, are involved in the Industrial Internet Consortium, which is developing use cases and test beds in the area, according to Miller.

He noted that GE plans to begin shipping its microelectromechanical system devices to external customers in the fourth quarter of this year.

Abdi said, “What is the thing in the Internet of Things? The IoT is really about ambient computing.” IoT sensors must continuously answer these questions: Where are you, what are you doing, and how does it feel, he said.

The IoT will depend upon “always on” sensors, making it more accurate to call the technology “the Internet of Sensors,” Abdi asserted. He cautioned against semiconductor suppliers getting too giddy about business prospects for the IoT.

“You’re not going to sell one billion sensors for a buck [each],” Abdi said.

Pancoast of Atmel said sensors would help provide “contextual computing” in IoT networks. “Edge/sensing nodes are a major part of IoT,” he noted. Low-power microcontrollers and microprocessors are also part of the equation, along with “an ocean of software” and all IoT applications, Pancoast added. He finished with saying, “All software is vulnerable.”

Allan spoke about what he called “the second machine age,” with the first machine age dating to 1945, marking the advent of the stored-program computer and other advances. “The smartphone is the first machine of the second machine age,” he said.

IoT involves wireless sensor networks and distributed computing, he said. Google has pointed the way over the past decade, showing how less-powerful computers, implemented in large volumes, have become the critical development in computing, Allan noted. Because of this ubiquity of distributed computing capabilities, “Moore’s Law doesn’t matter as much,” he said.

With the IoT, “new machines will augment human desires,” Allan predicted, facilitating such concepts as immortality, omniscience, telepathy, and teleportation. He explained how technology has helped along the first three – we know what people are thinking through Facebook and Twitter – and the last is just a matter of time, according to Allan.