Part of the  

Solid State Technology


The Confab


About  |  Contact

Posts Tagged ‘inspection’

Multibeam Patents Direct Deposition & Direct Etch

Monday, November 14th, 2016


By Ed Korczynski, Sr. Technical Editor

Multibeam Corporation of Santa Clara, California recently announced that its e-beam patent portfolio—36 filed and 25 issued—now includes two innovations that leverage the precision placement of electrons on the wafer to activate chemical processes such as deposition and etch. As per the company’s name, multi-column parallel processing chambers will be used to target throughputs usable for commercial high-volume manufacturing (HVM) though the company does not yet have a released product. These new patents add to the company’s work in developing Complementary E-Beam Lithography (CEBL) to reduce litho cost, Direct Electron Writing (DEW) to enhance device security, and E-Beam Inspection (EBI) to speed defect detection and yield ramp.

The IC fab industry’s quest to miniaturize circuit features has already reached atomic scales, and the temperature and pressure ranges found on the surface of our planet make atoms want to move around. We are rapidly leaving the known era of deterministic manufacturing, and entering an era of stochastic manufacturing where nothing is completely determined because atomic placements and transistor characteristics vary within distributions. In this new era, we will not be able to guarantee that two adjacent transistors will function the same, which can lead to circuit failures. Something new is needed. Either we will have to use new circuit design approaches that require more chip area such as “self-healing” or extreme redundancy, or the world will have to inspect and repair transistors within the billions on every HVM chip.

In an exclusive interview with Solid State Technology, David K. Lam, Multibeam Chairman, said, “We provide a high-throughput platform that uses electron beams as an activation mechanism. Each electron-beam column integrates gas injectors, as well as sensors, which enable highly localized control of material removal and deposition. We can etch material in a precise location to a precise depth. Same with deposition.” Lam (Sc.D. MIT) was the founder and first CEO of Lam Research where he led development and market penetration of the IC fab industry’s first fully automated plasma etch system, and was inducted into the Silicon Valley Engineering Hall of Fame in 2013.

“Precision deposition using miniature-column charged particle beam arrays” (Patent #9,453,281) describes patterning of IC layers by either creating a pattern specified by the design layout database in its entirety or in a complementary fashion with other patterning processes. Reducing the total number of process steps and eliminating lithography steps in localized material addition has the dual benefit of reducing manufacturing cycle time and increasing yield by lowering the probability of defect introduction. Furthermore, highly localized, precision material deposition allows for controlled variation of deposition rate and enables creation of 3D structures such as finFETs and NanoWire (NW) arrays.

Deposition can be performed using one or more multi-column charged particle beam systems using chemical vapor deposition (CVD) alone or in concert with other deposition techniques. Direct deposition can be performed either sequentially or simultaneously by multiple columns in an array, and different columns can be configured and/or optimized to perform the same or different material depositions, or other processes such as inspection and metrology.

“Precision substrate material removal using miniature-column charged particle beam arrays” (Patent #9,466,464) describes localized etch using activation electrons directed according to the design layout database so that etch masks are no longer needed. Figure 1 shows that costs are reduced and edge placement accuracy is improved by eliminating or reducing errors associated with photomasks, litho steps, and hard masks. With highly localized process control, etch depths can vary to accommodate advanced 3D device structures.

Fig.1: Comparison of (LEFT) the many steps needed to etch ICs using conventional wafer processing and (RIGHT) the two simple steps needed to do direct etching. (Source: Multibeam)

“We aren’t inventing new etch chemistries, precursors or reactants,” explained Lam. “In direct etch, we leverage developments in reactive ion etching and atomic layer etch. In direct deposition, we leverage work in atomic layer deposition. Several research groups are also developing processes specifically for e-beam assisted etch and deposition.”

The company continues to invent new hardware, and the latest critical components are “kinetic lens” which are arrangements of smooth and rigid surfaces configured to reflect gas particles. When fixed in position with respect to a gas injector outflow opening, gas particles directed at the kinetic lens are collimated or redirected (e.g., “focused”) towards a wafer surface or a gas detector. Generally, surfaces of a kinetic lens can be thought of as similar to optical mirrors, but for gas particles. A kinetic lens can be used to improve localization on a wafer surface so as to increase partial pressure of an injected gas in a target area. A kinetic lens can also be used to increase specificity and collection rate for a gas detector within a target frame.

Complementary Lithography

Complementary lithography is a cost-effective variant of multi-patterning where some other patterning technology is used with 193nm ArF immersion (ArFi) to extend the resolution limit of the latter. The company’s Pilot™ CEBL Systems work in coordination with ArFi lithography to pattern cuts (of lines in a “1D lines-and-cuts” layout) and holes (i.e., contacts and vias) with no masks. These CEBL systems can seamlessly incorporate multicolumn EBI to accelerate HVM yield ramps, using feedback and feedforward as well as die-to-database comparison.

Figure 2 shows that “1D” refers to 1D gridded design rule. In a 1D layout, optical pattern design is restricted to lines running in a single direction, with features perpendicular to the 1D optical design formed in a complementary lithography step known as “cutting”. The complementary step can be performed using a charged particle beam lithography tool such as Multibeam’s array of electrostatically-controlled miniature electron beam columns. Use of electron beam lithography for this complementary process is also called complementary e-beam lithography, or CEBL. The company claims that low pattern-density layers such as for cuts, one multi-column chamber can provide 5 wafers-per-hour (wph) throughput.

Fig.2: Complementary E-Beam Lithography (CEBL) can be used to “cut” the lines within a 1D grid array previously formed using ArF-immersion (ArFi) optical steppers. (Source: Multibeam)

Direct deposition can be used to locally interconnect 1D lines produced by optical lithography. This is similar in design principle to complementary lithography, but without using a resist layer during the charged particle beam phase, and without many of the steps required when using a resist layer. In some applications, such as restoring interconnect continuity, the activation electrons are directed to repair defects that are detected during EBI.


Applied Materials Intros High Res E-Beam Inspection System

Monday, July 11th, 2016


Applied Materials, Inc. introduced its next-generation e-beam inspection system that offers resolution down to 1nm. This allows users to detect the most challenging “killer” defects that other technologies cannot find, and to monitor process marginality to rapidly resolve ramp issues and achieve higher yields. Called PROVision™, the system offers 3x faster throughput over existing e-beam hotspot inspection tools.

Ram Peltinov, senior director, strategic marketing for the Process Diagnostics and Control Group at Applied Materials, said the development of the new system was driven by a number of new challenges: Structures and defects are now too small for optical resolution; multi-patterning triggers a need for massive measurements; and 3D architectures limit the ability to detect and measure.

“FinFETs are becoming increasingly complex, the multi-patterning creates multiple steps, the DRAM aspect ratios are getting very high and the VNAND is going vertical,” he said. “All these changes are happening in parallel and this creates great opportunity for metrology and inspection,” he said. According to Gartner, the market for e-beam inspection systems has tripled in the last five years, from $81M in 2010 to $241M in 2015.

The system’s high current density (beam current per sampling area) eliminates the sampling/throughput tradeoff of previous systems, allowing the fastest sampling throughput at its 1nm resolution. Imaging capabilities encompass techniques such as see-through, high aspect ratio, 360° topography, and back-scattered electron detection.

“It allows them to capture defects they couldn’t see before,” Peltinov said. The system can detect, for example, epi-overgrowth in FinFETs. “While the epi overgrowth is clearly visible on the PROVision, it’s almost impossible to see in conventional EBI. Without the resolution and the special imaging, it’s very difficult to catch that.”

“They can also increase their sampling with the faster throughput on the most challenging layers. This also helps them reveal process signatures of their most subtle process variation,”  Peltinov added. Massive sampling reveals hidden process trends and “signatures” that help identify sources of abnormalities, and shorten the time to root cause from days to minutes.

Molecular Modeling of Materials Defects for Yield Recovery

Monday, March 21st, 2016


By Ed Korczynski, Sr. Technical Editor

New materials are being integrated into High Volume Manufacturing (HVM) of semiconductor ICs, while old materials are being extended with more stringent specifications. Defects within materials cause yield losses in HVM fabs, and engineers must identify the specific source of an observed defect before corrective steps can be taken. Honeywell Electronic Materials has been using molecular modeling software provided by Scienomics to both develop new materials and to modify old materials. Modeling allowed Honeywell to uncover the origin of subtle solvation-based film defects within Bottom Anti-Reflective Coatings (BARC) which were degrading yield in a customer’s lithographic process module.

Scienomics sponsored a Materials Modeling and Simulations online seminar on February 26th of this year, featuring Dr. Nancy Iwamoto of Honeywell discussing how Scienomics software was used to accelerate response to a customer’s manufacturing yield loss. “This was a product running at a customer line,” explained Iwamoto, “and we needed to find the solution.” The product was a Bottom Anti-Reflective Coating (BARC) organo-silicate polymer delivered in solution form and then spun on wafers to a precise thickness.

Originally observed during optical inspection by fab engineers as 1-2 micron sized vague spots in the BARC, the new defect type was difficult to see yet could be correlated to lithographic yield loss. The defects appeared to be discrete within the film instead of on the top surface, so the source was likely some manner of particle, yet filters did not capture these particles.

The filter captured some particles rich in silicon, as well as other particles rich in carbon. Sequential filtration showed that particles were passing through impossibly small pores, which suggested that the particles were built of deformable gel-like phases. The challenge was to find the material handling or processing situation, which resulted in thermodynamically possible and kinetically probable conditions that could form such gels.

Fig: Materials Processes and Simulations (MAPS) gives researchers access to visualization and analysis tools in a single user interface together with access to multiple simulation engines. (Source: Scienomics)

Molecular modeling and simulation is a powerful technique that can be used for materials design, functional upgrades, process optimization, and manufacturing. The Figure shows a dashboard for Scienomics’ modeling platform. Best practices in molecular modeling to find out-of-control parameters in HVM include a sequential workflow:

  • Build correct models based on experimental observables,
  • Simulate potential molecular structures based on known chemicals and hierarchical models,
  • Analyze manufacturing variabilities to identify excursion sources, and
  • Propose remedy for failure elimination.

Honeywell Electronic Materials researchers had very few experimental observables from which to start:  phenomenon is rare (yet effects yield), not filterable, yet from thermodynamic hydrolysis parameters it must be quasi-stable. Re-testing of product and re-examination of Outgoing Quality Control (OQC) data at the Honeywell production site showed that the molecular weight of the product was consistent with the desired distribution. There was also an observed BARC thickness increase of ~1nm on the wafer associated with the presence of these defects.

Using the modeling platform, Honeywell looked at the solubility parameters for different small molecular chains off of known-branched back-bone centers. Gel-like agglomerations could certainly be formed under the wrong conditions. Once the agglomerations form, they are not very stable so they can probably dis-aggregate when being forced through a filter and then re-aggregate on the other side.

What conditions could induce gel formation? After a few weeks of modeling, it was determined that temperature variations had the greatest influence on the agglomeration, and that variability was strongest at the ~250°K recommended for storage. Storage at 230°K resulted in measurably worse agglomeration, and any extreme in heating/cooling ramp rate tended to reduce solubility.

Molecular modeling was used in a forensic manner to find that the root cause of gel-like defects was related to thermal history:

*   Thermodynamics determined the most likely oligomers that could agglomerate,

*   Temperature-dependent solubility models determined which particles would reach wafers.

Because of the on-wafer BARC thickness increase of ~1nm, fab engineers could use all of the molecular modeling information to trace the temperature variation to bottles installed in the lithographic track tool. The fab was able to change specifications for the storage and handling of the BARC bottles to bring the process back into control.

Managing Dis-Aggregated Data for SiP Yield Ramp

Monday, August 24th, 2015


By Ed Korczynski, Sr. Technical Editor

In general, there is an accelerating trend toward System-in-Package (SiP) chip designs including Package-On-Package (POP) and 3D/2.5D-stacks where complex mechanical forces—primarily driven by the many Coefficient of Thermal Expansion (CTE) mismatches within and between chips and packages—influence the electrical properties of ICs. In this era, the industry needs to be able to model and control the mechanical and thermal properties of the combined chip-package, and so we need ways to feed data back and forth between designers, chip fabs, and Out-Sourced Assembly and Test (OSAT) companies. With accelerated yield ramps needed for High Volume Manufacturing (HVM) of consumer mobile products, to minimize risk of expensive Work In Progress (WIP) moving through the supply chain a lot of data needs to feed-forward and feedback.

Calvin Cheung, ASE Group Vice President of Business Development & Engineering, discussed these trends in the “Scaling the Walls of Sub-14nm Manufacturing” keynote panel discussion during the recent SEMICON West 2015. “In the old days it used to take 12-18 months to ramp yield, but the product lifetime for mobile chips today can be only 9 months,” reminded Cheung. “In the old days we used to talk about ramping a few thousand chips, while today working with Qualcomm they want to ramp millions of chips quickly. From an OSAT point of view, we pride ourselves on being a virtual arm of the manufacturers and designers,” said Cheung, “but as technology gets more complex and ‘knowledge-base-centric” we see less release of information from foundries. We used to have larger teams in foundries.” Dick James of ChipWorks details the complexity of the SiP used in the Apple Watch in his recent blog post at SemiMD, and documents the details behind the assumption that ASE is the OSAT.

With single-chip System-on-Chip (SoC) designs the ‘final test’ can be at the wafer-level, but with SiP based on chips from multiple vendors the ‘final test’ now must happen at the package-level, and this changes the Design For Test (DFT) work flows. DRAM in a 3D stack (Figure 1) will have an interconnect test and memory Built-In Self-Test (BIST) applied from BIST resident on the logic die connected to the memory stack using Through-Silicon Vias (TSV).

Fig.1: Schematic cross-sections of different 3D System-in-Package (SiP) design types. (Source: Mentor Graphics)

“The test of dice in a package can mostly be just re-used die-level tests based on hierarchical pattern re-targeting which is used in many very large designs today,” said Ron Press, technical marketing director of Silicon Test Solutions, Mentor Graphics, in discussion with SemiMD. “Additional interconnect tests between die would be added using boundary scans at die inputs and outputs, or an equivalent method. We put together 2.5D and 3D methodologies that are in some of the foundry reference flows. It still isn’t certain if specialized tests will be required to monitor for TSV partial failures.”

“Many fabless semiconductor companies today use solutions like scan test diagnosis to identify product-specific yield problems, and these solutions require a combination of test fail data and design data,” explained Geir Edie, Mentor Graphics’ product marketing manager of Silicon Test Solutions. “Getting data from one part of the fabless organization to another can often be more challenging than what one should expect. So, what’s often needed is a set of ‘best practices’ that covers the entire yield learning flow across organizations.”

“We do need a standard for structuring and transmitting test and operations meta-data in a timely fashion between companies in this relatively new dis-aggregated semiconductor world across Fabless, Foundry, OSAT, and OEM,” asserted John Carulli, GLOBALFOUNDRIES’ deputy director of Test Development & Diagnosis, in an exclusive discussion with SemiMD. “Presently the databases are still proprietary – either internal to the company or as part of third-party vendors’ applications.” Most of the test-related vendors and users are supporting development of the new Rich Interactive Test Database (RITdb) data format to replace the Standard Test Data Format (STDF) originally developed by Teradyne.

“The collaboration across the semiconductor ecosystem placed features in RITdb that understand the end-to-end data needs including security/provenance,” explained Carulli. Figure 2 shows that since RITdb is a structured data construct, any data from anywhere in the supply chain could be easily communicated, supported, and scaled regardless of OSAT or Fabless customer test program infrastructure. “If RITdb is truly adopted and some certification system can be placed around it to keep it from diverging, then it provides a standard core to transmit data with known meaning across our dis-aggregated semiconductor world. Another key part is the Test Cell Communication Standard Working Group; when integrated with RITdb, the improved automation and control path would greatly reduce manually communicated understanding of operational practices/issues across companies that impact yield and quality.”

Fig.2: Structure of the Rich Interactive Test Database (RITdb) industry standard, showing how data can move through the supply chain. (Source: Texas Instruments)

Phil Nigh, GLOBALFOUNDRIES Senior Technical Staff, explained to SemiMD that for heterogeneous integration of different chip types the industry has on-chip temperature measurement circuits which can monitor temperature at a given time, but not necessarily identify issues cause by thermal/mechanical stresses. “During production testing, we should detect mechanical/thermal stress ‘failures’ using product testing methods such as IO leakage, chip leakage, and other chip performance measurements such as FMAX,” reminded Nigh.

Model but verify

Metrology tool supplier Nanometrics has unique perspective on the data needs of 3D packages since the company has delivered dozens of tools for TSV metrology to the world. The company’s UniFire 7900 Wafer-Scale Packaging (WSP) Metrology System uses white-light interferometry to measure critical dimensions (CD), overlay, and film thicknesses of TSV, micro-bumps, Re-Distribution Layer (RDL) structures, as well as the co-planarity of Cu bumps/pillars. Robert Fiordalice, Nanometrics’ Vice President of UniFire business group, mentioned to SemiMD in an exclusive interview that new TSV structures certainly bring about new yield loss mechanisms, even if electrical tests show standard results such as ‘partial open.’ Fiordalice said that, “we’ve had a lot of pull to take our TSV metrology tool, and develop a TSV inspection tool to check every via on every wafer.” TSV inspection tools are now in beta-tests at customers.

As reported at 3Dincites, Mentor Graphics showed results at DAC2015 of the use of Calibre 3DSTACK by an OSAT to create a rule file for their Fan-Out Wafer-Level Package (FOWLP) process. This rule file can be used by any designer targeting this package technology at this assembly house, and checks the manufacturing constraints of the package RDL and the connectivity through the package from die-to-die and die-to-BGA. Based on package information including die order, x/y position, rotation and orientation, Calibre 3DSTACK performs checks on the interface geometries between chips connected using bumps, pillars, and TSVs. An assembly design kit provides a standardized process both chip design companies and assembly houses can use to ensure the manufacturability and performance of 3D SiP.