Part of the  

Solid State Technology


The Confab


About  |  Contact

Posts Tagged ‘Inpria’

EUVL Materials Readiness for HVM

Friday, June 2nd, 2017


By Ed Korczynski, Sr. Technology Editor

Extreme-Ultra-Violet Lithography (EUVL)—based on ~13.5nm wavelength EM waves bouncing off mirrors in a vacuum—will finally be used in commercial IC fabrication by Intel, Samsung, and TSMC starting in 2018. In a recent quarterly earning calls ASML reported a backlog of orders for 21 EUVL tools. At the 2017 SPIE Advanced Lithography conference, presentations detailed how the source and mask and resist all are near targets for next year, while the mask pellicle still needs work. Actinic metrology for mask inspection still remains a known expensive issue to solve.

Figure 1 shows minimal pitch line/space grids and contact-hole arrays patterned with EUVL at global R&D hub IMEC in Belgium, as presented at the recent 2017 IMEC Technology Forum. While there is no way with photolithography to escape the trade-offs of the Resolution/Line-Width-Roughness/Sensitivity (RLS) triangle, patterning at the leading edge of possible pitches requires application-specific etch integration. The bottom row of SEMs in this figure all show dramatic improvements in LWR through atomic-scale etch and deposition treatments to patterned sidewalls.

Fig.1: SEM plan-view images of minimum pitch Resolution and Line-Width-Roughness and Sensitivity (RLS) for both Chemically-Amplified Resist (CAR) and Non-Chemically-Amplified Resist (NCAR, meaning metal-oxide solution from Inpria) formulations, showing that excessive LWR can be smoothed by various post-lithography deposition/etch treatments. (Source: IMEC)

ASML has recently claimed that as an indication of continued maturity, ASML’s NXE:33×0 steppers have now collectively surpassed one million processed wafers to date, and only correctly exposed wafers were included in the count. During the company’s 1Q17 earnings call, it was reported that three additional orders for NXE:3400B steppers were received in Q1 adding  to a total of 21 in backlog, worth nearly US$2.5B.

At $117M each NXE:3400B, assuming 10 years useful life it costs $32,000 each day and assuming 18 productive hours/day and 80 wafers/hour then it costs $22 per wafer-pass just for tool depreciation. In comparison, a $40M argon-fluoride immersion (ArFi) stepper over ten years with 21 available hours/day and 240 wafers/hour costs $2.2 per wafer-pass for depreciation. EUVL will always be an expensive high-value-add technology, even though a single EUVL exposure can replace 4-5 ArFi exposures.

Fabs that delay use of EUVL at the leading edge of device scaling will instead have to buy and facilitize many more ArFi tools, demanding more fab space and more optical lithography gases. SemiMD spoke with Paul Stockman, Linde Electronics’ Head of Market Development, about the global supply of specialty neon and xenon gas blends:  “Xenon is only a ppm level component of the neon-blend for Kr and Ar lasers, so there should be no concerns with Xenon supply for the industry. In our modeling we’ve realized the impact of multi-patterning on gas demand, and we’ve assumed that the industry would need multi-patterning in our forecasts.” said Stockman.

“From the Linde perspective, we manage supply carefully to meet anticipated customer demand,” reminded Stockman. “We recently added 40 million liters of neon capacity in the US, and continue to add significant supply with partners so that we can serve our customers regardless of the EUV scenario.” (Editor’s note: reported by SemiMD here.)

At SPIE Advanced Lithography 2017, SemiMD discussed multi-patterning process flows with Uday Mitra and Regina Freed of Applied Materials. “We need a lot of materials engineering now,” explained Freed. “We need new gap-fills and hard-masks, and we may need new materials for selective deposition. Regarding the etch, we need extreme selectivity with no damage, and ability to get into the smallest features to take out just one atomic layer at a time.”

Reminding us that IC fabs must be risk-averse when considering technology options, Mitra (formerly with Intel) commented, “You don’t do a technology change and a wafer size change at the same time. That’s how you risk manage, and you can imagine with something like EUVL that customers will first use it for limited patterning and check it out.”

Figure 2 lists the major issues in pattern-transfer using plasma etch tools, along with the process variables that must be controlled to ensure proper pattern fidelity. Applied Materials’ Sym3 etch chamber features hardware that provides pulsed energy at dual frequencies along with low residence time of reactant byproducts to allow for precise tuning of process parameters no matter what chemistry is needed.

Fig.2: Patterning issues and associated etch process variables which can be used for control thereof. (Source: Applied Materials)

Andrew Grenville, CEO of resist supplier Inpria, in an exclusive interview with SemiMD, commented on the infrastructure readiness for EUVL volume production. “We are building up our pilot line facility in Corvallis, Oregon. The timing for that is next year, and we are putting in place plans to continue to scale up the new materials at the same times as the quality control systems such as functional QC.” The end-users ask for quality control checks of more parameters, putting a burden on suppliers to invest in more metrology tools and even develop new measurement techniques. Inpria’s resist is based on SnOx nanoparticles, which provide for excellent etch resistance even with layers as thin as 20nm, but required the development of a new technique to measure ppb levels of trace metals in the presence of high tin signals.

“We believe that there is continued opportunity for improvement in the overall patterning performance based on the ancillaries, particularly in simplifying the under-layers. One of the core principles of our material is that we’re putting the ‘resist’ back in the resist,” enthused Grenville. “We can show the etch contrast of our material can really improve the Line-Width Roughness of the patterns because of what you can do in etch, and it’s not merely smoothing the resist. We can substantially improve the outcome by engineering the stack and the etch recipe using completely different chemistry than could be used with chemically-amplified resist.”

The 2017 EUVL Workshop (2017 International Workshop on EUV Lithography) will be held June 12-15 at The Center for X-ray Optics (CXRO) at Lawrence Berkeley National Laboratory in Berkeley, CA. This workshop, now in its tenth year, is focused on the fundamental science of EUV Lithography (EUVL). Travel and hotel information as well as on-line registration is available at

[DISCLOSURE:  Ed Korczynski is also Sr. Analyst for TECHCET responsible for the Critical Materials Report (CMR) on Photoresists, Extensions & Ancillaries.]


The Week in Review: June 20, 2014

Friday, June 20th, 2014

GS Nanotech, microelectronics products development and manufacture center, plans to launch mass assembly of 3D stacked TSV (through-silicon via) microcircuits in next few years.

Bookings and billings maintained a consistent pace in May 2014 as North American semiconductor equipment industry posts May 2014 book-to-bill ratio of 1.00.

Inpria Corporation, a developer of high-resolution photoresists, announced that it has received additional equity investment and commitments totaling $1.45 million.

Entegris Inc. inaugurated its new i2M Center for Advanced Materials Science in Bedford, Massachusetts.

memsstar Limited, a provider of etch and deposition equipment and technology solutions to manufacturers of semiconductors and micro-electrical mechanical systems (MEMS), announced that it has relocated to a new, larger facility.

A UC Riverside-led research project is among the 32 named by U.S. Energy Secretary Ernest Moniz as an Energy Frontier Research Centers (EFRCs), designed to accelerate the scientific breakthroughs needed to build a new 21st-century energy economy in the United States.

Cadence Design Systems, Inc. announced that it has completed the acquisition of Jasper Design Automation, Inc.

Analog Devices, Inc., a developer of high-performance semiconductors for signal processing applications, announced that Dr. Edward Frank has been elected as a Director of the Company.

Solid State Watch: June 13-19, 2014

Friday, June 20th, 2014
YouTube Preview Image

Solid State Watch: February 14-20, 2014

Friday, February 21st, 2014
YouTube Preview Image