Part of the  

Solid State Technology

  and   

The Confab

  Network

About  |  Contact

Posts Tagged ‘Imec’

Next Page »

EUV Resists and Stochastic Processes

Friday, March 4th, 2016

thumbnail

By Ed Korczynski, Sr. Technical Editor

In an exclusive interview with Solid State Technology during SPIE-AL this year, imec Advanced Patterning Department Director Greg McIntyre said, “The big encouraging thing at the conference is the progress on EUV.” The event included a plenary presentation by TSMC Nanopatterning Technology Infrastructure Division Director and SPIE Fellow Anthony Yen on “EUV Lithography: From the Very Beginning to the Eve of Manufacturing.” TSMC is currently learning about EUVL using 10nm- and 7nm-node device test structures, with plans to deploy it for high volume manufacturing (HVM) of contact holes at the 5nm node. Intel researchers confirm that they plan to use EUVL in HVM for the 7nm node.

Recent improvements in EUV source technology— 80W source power had been shown by the end of 2014, 185W by the end of 2015, and 200W has now been shown by ASML—have been enabled by multiple laser pulses tuned to the best produce plasma from tin droplets. TSMC reports that 518 wafers per day were processed by their ASML EUV stepper, and the tool was available ~70% of the time. TSMC shows that a single EUVL process can create 46nm pitch lines/spaces using a complex 2D mask, as is needed for patterning the metal2 layer within multilevel on-chip interconnects.

To improve throughput in HVM, the resist sensitivity to the 13.54nm wavelength radiation of EUV needs to be improved, while the line-width roughness (LWR) specification must be held to low single-digit nm. With a 250W source and 25 mJ/cm2 resist sensitivity an EUV stepper should be able to process ~100 wafer-per-hour (wph), which should allow for affordable use when matched with other lithography technologies.

Researchers from Inpria—the company working on metal-oxide-based EUVL resists—looked at the absorption efficiencies of different resists, and found that the absorption of the metal oxide based resists was ≈ 4 to 5 times higher than that of the Chemically-Amplified Resist (CAR). The Figure shows that higher absorption allows for the use of proportionally thinner resist, which mitigates the issue of line collapse. Resist as thin as 18nm has been patterned over a 70nm thin Spin-On Carbon (SOC) layer without the need for another Bottom Anti-Reflective Coating (BARC). Inpria today can supply 26 mJ/cm2 resist that creates 4.6nm LWR over 140nm Depth of Focus (DoF).

To prevent pattern collapse, the thickness of resist is reduced proportionally to the minimum half-pitch (HP) of lines/spaces. (Source: JSR Micro)

JEIDEC researchers presented their summary of the trade-off between sensitivity and LWR for metal-oxide-based EUV resists:  ultra high sensitivity of 7 mJ/cm2 to pattern 17nm lines with 5.6nm LWR, or low sensitivity of 33 mJ/cm2 to pattern 23nm lines with 3.8nm LWR.

In a keynote presentation, Seong-Sue Kim of Samsung Electronics stated that, “Resist pattern defectivity remains the biggest issue. Metal-oxide resist development needs to be expedited.” The challenge is that defectivity at the nanometer-scale derives from “stochastics,” which means random processes that are not fully predictable.

Stochastics of Nanopatterning

Anna Lio, from Intel’s Portland Technology Development group, stated that the challenges of controlling resist stochastics, “could be the deal breaker.” Intel ran a 7-month test of vias made using EUVL, and found that via critical dimensions (CD), edge-placement-error (EPE), and chain resistances all showed good results compared to 193i. However, there are inherent control issues due to the random nature of phenomena involved in resist patterning:  incident “photons”, absorption, freed electrons, acid generation, acid quenching, protection groups, development processes, etc.

Stochastics for novel chemistries can only be controlled by understanding in detail the sources of variability. From first-principles, EUV resist reactions are not photon-chemistry, but are really radiation-chemistry with many different radiation paths and electrons which can be generated. If every via in an advanced logic IC must work then the failure rate must be on the order of 1 part-per-trillion (ppt), and stochastic variability from non-homogeneous chemistries must be eliminated.

Consider that for a CAR designed for 15mJ/cm2 sensitivity, there will be just:

145 photons/nm2 for 193, and

10 photons/nm2 for EUV.

To improve sensitivity and suppress failures from photon shot-noise, we need to increase resist absorption, and also re-consider chemical amplification mechanisms. “The requirements will be the same for any resist and any chemistry,” reminded Lio. “We need to evaluate all resists at the same exposure levels and at the same rules, and look at different features to show stochastics like in the tails of distributions. Resolution is important but stochastics will rule our world at the dimensions we’re dealing with.”

—E.K.

Many Mixes to Match Litho Apps

Thursday, March 3rd, 2016

thumbnail

By Ed Korczynski, Sr. Technical Editor

“Mix and Match” has long been a mantra for lithographers in the deep-sub-wavelength era of IC device manufacturing. In general, forming patterns with resolution at minimum pitch as small as 1/4 the wavelength of light can be done using off-axis illumination (OAI) through reticle enhancement techniques (RET) on masks, using optical proximity correction (OPC) perhaps derived from inverse lithography technology (ILT). Lithographers can form 40-45nm wide lines and spaces at the same half-pitch using 193nm light (from ArF lasers) in a single exposure.

Figure 1 shows that application-specific tri-layer photoresists are used to reach the minimum resolution of 193nm-immersion (193i) steppers in a single exposure. Tighter half-pitch features can be created using all manner of multi-patterning processes, including Litho-Etch-Litho-Etch (LELE or LE2) using two masks for a single layer or Self-Aligned Double Patterning (SADP) using sidewall spacers to accomplish pitch-splitting. SADP has been used in high volume manufacturing (HVM) of logic and memory ICs for many years now, and Self-Aligned Quadruple Patterning (SAQP) has been used in HVM by at least one leading memory fab.

Fig.1: Basic tri-layer resist (TLR) technology uses thin Photoresist over silicon-containing Hard-Mask over Spin-On Carbon (SOC), for patterning critical layers of advanced ICs. (Source: Brewer Science)

Next-Generation Lithography (NGL) generally refers to any post-optical technology with at least some unique niche patterning capability of interest to IC fabs:  Extreme Ultra-Violet (EUV), Directed Self-Assembly (DSA), and Nano-Imprint Lithography (NIL). Though proponents of each NGL have dutifully shown capabilities for targeted mask layers for logic or memory, the capabilities of ArF dry and immersion (ArFi) scanners to process >250 wafers/hour with high uptime dominates the economics of HVM lithography.

The world’s leading lithographers gather each year in San Jose, California at SPIE’s Advanced Lithography conference to discuss how to extend optical lithography. So of all the NGL technologies, which will win out in the end?

It is looking most likely that the answer is “all of the above.” EUV and NIL could be used for single layers. For other unique patterning application, ArF/ArFi steppers will be used to create a basic grid/template which will be cut/trimmed using one of the available NGL. Each mask layer in an advanced fab will need application-specific patterning integration, and one of the rare commonalities between all integrated litho modules is the overwhelming need to improve pattern overlay performance.

Naga Chandrasekaran, Micron Corp. vice president of Process R&D, provided a fantastic overview of the patterning requirements for advanced memory chips in a presentation during Nikon’s LithoVision technical symposium held February 21st in San Jose, California prior to the start of SPIE-AL. While resolution improvements are always desired, in the mix-and-match era the greatest challenges involve pattern overlay issues. “In high volume manufacturing, every nanometer variation translates into yield loss, so what is the best overlay that we can deliver as a holistic solution not just considering stepper resolution?” asks Chandrasekaran. “We should talk about cost per nanometer overlay improvement.”

Extreme Ultra-Violet (EUV)

As touted by ASML at SPIE-AL, the brightness and stability and availability of tin-plasma EUV sources continues to improve to 200W in the lab “for one hour, with full dose control,” according to Michael Lercel, ASML’s director of strategic marketing. ASML’s new TWINSCAN NXE:3350B EUVL scanners are now being shipped with 125W power sources, and Intel and Samsung Electronics reported run their EUV power sources at 80W over extended periods.

During Nikon’s LithoVision event, Mark Phillips, Intel Fellow and Director of Lithography Technology Development for Logic, summarized recent progress of EUVL technology:  ~500 wafers-per-day is now standard, and ~1000 wafer-per-day can sometimes happen. However, since grids can be made with ArFi for 1/3 the cost of EUVL even assuming best productivity for the latter, ArFi multi-patterning will continue to be used for most layers. “Resolution is not the only challenge,” reminded Phillips. “Total edge-placement-error in patterning is the biggest challenge to device scaling, and this limit comes before the device physics limit.”

Directed Self-Assembly (DSA)

DSA seems most suited for patterning the periodic 2D arrays used in memory chips such as DRAMs. “Virtual fabrication using directed self-assembly for process optimization in a 14nm DRAM node” was the title of a presentation at SPIE-AL by researchers from Coventor, in which DSA compared favorably to SAQP.

Imec presented electrical results of DSA-formed vias, providing insight on DSA processing variations altering device results. In an exclusive interview with Solid State Technology and SemiMD, imec’s Advanced Patterning Department Director Greg McIntyre reminds us that DSA could save one mask in the patterning of vias which can all be combined into doublets/triplets, since two masks would otherwise be needed to use 193i to do LELE for such a via array. “There have been a lot of patterning tricks developed over the last few years to be able to reduce variability another few nanometers. So all sorts of self-alignments.”

While DSA can be used for shrinking vias that are not doubled/tripled, there are commercially proven spin-on shrink materials that cost much less to use as shown by Kaveri Jain and Scott Light from Micron in their SPIE-AL presentation, “Fundamental characterization of shrink techniques on negative-tone development based dense contact holes.” Chemical shrink processes primarily require control over times, temperatures, and ambients inside a litho track tool to be able repeatably shrink contact hole diameters by 15-25 nm.

Nano-Imprint Litho (NIL)

For advanced IC fab applications, the many different options for NIL technology have been narrowed to just one for IC HVM. The step-and-pattern technology that had been developed and trademarked as “Jet and Flash Imprint Lithography” or “J-FIL” by, has been commercialized for HVM by Canon NanoTechnologies, formerly known as Molecular Imprints. Canon shows improvements in the NIL mask-replication process, since each production mask will need to be replicated from a written master. To use NIL in HVM, mask image placement errors from replication will have to be reduced to ~1nm., while the currently available replication tool is reportedly capable of 2-3nm (3 sigma).

Figure 2 shows normalized costs modeled to produce 15nm half-pitch lines/spaces for different lithography technologies, assuming 125 wph for a single EUV stepper and 60 wph for a cluster of 4 NIL tools. Key to throughput is fast filling of the 26mmx33mm mold nano-cavities by the liquid resist, and proper jetting of resist drops over a thin adhesion layer enables filling times less than 1 second.

Fig.2: Relative estimated costs to pattern 15nm half-pitch lines/spaces for different lithography technologies, assuming 125 wph for a single EUV stepper and 60 wph for a cluster of 4 NIL tools. (Source: Canon)

Researchers from Toshiba and SK Hynix described evaluation results of a long-run defect test of NIL using the Canon FPA-1100 NZ2 pilot production tool, capable of 10 wafers per hour and 8nm overlay, in a presentation at SPIE-AL titled, “NIL defect performance toward high-volume mass production.” The team categorized defects that must be minimized into fundamentally different categories—template, non-filling, separation-related, and pattern collapse—and determined parallel paths to defect reduction to allow for using NIL in HVM of memory chips with <20nm half-pitch features.

—E.K.

Comfortable Consumer EEG Headset Shown by Imec and Holst Centre

Thursday, August 27th, 2015

thumbnail

By Ed Korczynski, Sr. Technical Editor

A new wireless electroencephalogram (EEG) headset that is comfortable while providing medical-grade data acquisition has been shown by the partnership of imec, the Holst Centre, and the Industrial Design Engineering (IDE) department of TU Delft. The 3D-printed low-volume product enables early research and self-monitoring of emotions and mood in daily life situations using a smartphone application. Consumer applications include games that monitor relaxation and/or concentration, and medical applications that help with sleep disorders and treatment of Attention Deficit Hyperactivity Disorder (ADHD).

Figure 1 shows the new headset with novel elastic electrode arrays in an elegant uni-body assembly to optimize both comfort and signal quality. The electronics package in the middle of the headset fits on the back of the user’s neck. Each electrode is a small array of elastic polymer fingers which allow for dry contact—without needing a conductive liquid or gel—to skin for long-term comfortable use.

Figure1: Comfortable EEG headset developed by imec and Holst Centre and TU Delft in 2015, providing medical-quality data tracing of emotions and mood in daily life situations using a smartphone application. (Source: imec)

“Leveraging imec’s strong background in EEG sensing, dry polymer and active electrodes, miniaturized and low-power data acquisition, and low-power wireless interfaces to smartphones, we were able to focus on the ergonomics of this project. In doing so, we have successfully realized this unique combination of comfort and effectiveness at the lowest possible cost to the future user,” stated Bernard Grundlehner, EEG system architect at imec.

In 2011, imec and Holst Centre created an 8-channel ultra-low-power analog readout application-specific integrated circuit (ASIC) that consumes only 200µW and features high common mode rejection ratio (CMRR) of 120dB and signal to noise ratio of 25dB on real EEG signals. This ASIC is tuned to high input impedance (1GΩ) for compatibility with the use of dry electrodes. That system—including ASIC, radio, and controller chips— could be integrated in a package of 25mmx35mmx5mm dimensions for easy of integration in headsets, helmets, or other accessories. That system consumes only 3.3mW for continuous recording and wireless transmission of 1 channel—9.2mW for 8 channels—allowing for 1.5 to 4 days of functionality when powered by a 100mAh Li-ion battery.

In 2009, imec and Holst Centre showed off a rough mobile EEG prototype to partners and journalists at the yearly imec Technology Forum. Figure 2 shows that the prototype was bulky and a bit awkward to wear, while the figure does not show that sintered silver/silver-chloride electrodes are very hard such that dry contact to the human scalp tends to be uncomfortable.

Figure2: Ed Korczynski tests an imec EEG headset rough prototype, using uncomfortable hard silver/silver-chloride electrodes, at the 2009 Imec Technology Forum. (Source: Ed Korczynski)

The 2015 model uses new flexible electrodes arrays which are inherently more comfortable than hard silver/silver-chloride electrodes. A team of six master students from IDE of TU Delft led the design optimization of the 3D unibody for the new headset using 3D printing for short-loop prototyping and testing of different shapes for stability and comfort. Iterative tests with users for multiple applications led to this design which is intended for long-term comfortable use by consumers outside of a controlled research environment.

The new EEG headset is manufactured in one piece using 3-D printing, after which the electronic components are placed, connected, and covered by a 3-D-printed rubber inlay. The EEG electrodes are situated at the front of the headset for optimal acquisition of signals related to emotion and mood variations. A mobile app can then tie the user’s emotional state to environmental information such as location, time, agenda, and social context to track possible unconscious effects.

—E.K.

Solid State Technology: August 7-14, 2015

Monday, August 24th, 2015
YouTube Preview Image

Technologies for Advanced Systems Shown at IMEC Tech Forum USA

Tuesday, July 14th, 2015

thumbnail.

By Ed Korczynski, Sr. Technical Editor

Luc Van den hove, president and CEO, imec opened the Imec Technology Forum – USA in San Francisco on July 13 by reminding us of the grand vision and motivation behind the work of our industry to empower individuals with micro- and nano-technologies in his talk, “From the happy few to the happy many.” While the imec consortium continues to lead the world in pure materials engineering and device exploration, they now work on systems-integration complexities with over 100 applications partners from agriculture, energy, healthcare, and transportation industries.

We are now living in an era where new chip technologies require trade-offs between power, performance, and bandwidth, and such trade-offs must be carefully explored for different applications spaces such as cloud clusters or sensor nodes. An Steegen, senior vice president process technology, imec, discussed the details of new CMOS chip extensions as well as post-CMOS device possibilities for different applications spaces in her presentation on “Technology innovation: an IoT era.” EUV lithography technology continues to be developed, targeting a single-exposure using 0.33 Numerical Aperture (NA) reflective lenses to pattern features as small as 18nm half-pitch, which would meet the Metal1 density specifications for the industry’s so-called “7nm node.” Patterning below 12nm half-pitch would seem to need higher-NA which is not an automatic extension of current EUV technology.

So while there is now some clarity regarding the pre-competitive process-technologies that will be needed to fabricate next-generation device, there is less clarity regarding which new device structures will best serve the needs of different electronics applications. CMOS finFETs using strained silicon-doped-with-Germanium Si(Ge) will eventually be replaced by gate-all-around (GAA) nano-wires (NW) using alternate-channel materials (ACM) with higher mobilities such as Ge and indium-gallium-arsenide (InGaAs). While many measures of CMOS performance improve with scaling to smaller dimensions, eventually leakage current and parasitic capacitances will impede further progress.

Figure 1 shows a summary of energy-vs.-delay analyses by imec for all manner of devices which could be used as switches in logic arrays. Spin-wave devices such as spin-transfer-torque RAM (STT-RAM) can run at low power consumption but are inherently slower than CMOS devices. Tunnel-FET (TFET) devices can be as fast or faster than CMOS while running at lower operating power due to reduced electrostatics, leading to promising R&D work.

Fig.1: Energy vs. delay for various logic switches. (Source: imec)

In an exclusive interview, Steegen explained how the consortium balances the needs of all partners in R&D, “When you try to predict future roadmaps you prefer to start from the mainstream. Trying to find the mainstream, so that customers can build derivatives from that, is what imec does. We’re getting closer to systems, and systems are reaching down to technology,” said Steegen. “We reach out to each other, while we continue to be experts in our own domains. If I’m inserting future memory into servers, the system architecture needs to change so we need to talk to the systems people. It’s a natural trend that has evolved.”

Network effects from “the cloud” and from future smart IoT nets require high-bandwidth and so improved electrical and optical connections at multiple levels are being explored at imec. Joris Van Campenhout, program director optical I/O, imec, discussed “Scaling the cloud using silicon photonics.” The challenge is how to build a 100Gb/s bandwidth in the near term, and then scale to 400G and then 1.6T though parallelism of wavelength division multiplexing; the best results to date for a transmitter and receiver reach 50Gb/s. By leveraging the existing CMOS manufacturing and 3-D assembly infrastructure, the hybrid CMOS silicon photonics platform enables high integration density and reduced power consumption, as well as high yield and low manufacturing cost. Supported by EDA tools including those from Mentor Graphics, there have been 7 tape-outs of devices in the last year using a Process Design Kit (PDK). When combined with laser sources and a 40nm node foundry CMOS chip, a complete integrated solution exists. Arrays of 50Gb/s structures can allow for 400Gb/s solutions by next year, and optical backplanes for server farms in another few years. However, to bring photonics closer to the chip in an optical interposer will require radical new new approaches to reduce costs, including integration of more efficient laser arrays.

Alexander Mityashin, project manager thin film electronics, imec, explained why we need, “thin film electronics for smart applications.” There are billions of items in our world that could be made smarter with electronics, provided we can use additive thin-film processes to make ultra-low-cost thin-film transistors (TFT) that fit different market demands. Using amorphous indium-gallium-zinc-oxide (a-IGZO) deposited at low-temperature as the active layer on a plastic substrate, imec has been able to produce >10k TFTs/cm2 using just 4-5 lithography masks. Figure 2 shows these TFT integrated into a near-field communications (NFC) chip as first disclosed at ISSCC earlier this year in the paper, “IGZO thin-film transistor based flexible NFC tags powered by commercial USB reader device at 13.56MHz.” Working with Panasonic in 2013, imec showed a flexible organic light-emitting diode (OLED) display of just 0.15mm thickness that can be processed at 180°C. In collaboration with the Holst Center, they have worked on disposable flexible sensors that can adhere to human skin.

Fig.2: Thin-Film Transistors (TFT) fabricated on plastic using Flat Panel Display (FPD) manufacturing tools. (Source: imec/Holst Center)

Jim O’Neill, Chief Technology Officer of Entegris, expanded on the systems-level theme of the forum in his presentation on “Putting the pieces together – Materials innovation in a disruptive environment.” With so many additional materials being integrated into new device structures, there are inherently new yield-limiting defect mechanisms that will have to be controlled. With demand for chips now being driven primarily by high-volume consumer applications, the time between first commercial sample and HVM has compressed such that greater coordination is needed between device, equipment, and materials companies. For example, instead of developing a wet chemical formulation on a tool and then optimizing it with the right filter or dispense technology, the Process Engineer can start envisioning a “bottle-to-nozzle wetted surface solution.” By considering not just the intended reactions on the wafer but the unintended reactions that can occur up-steam and down-stream of the process chamber, full solutions to the semiconductor industry’s most challenging yield problems can be more quickly found.

—E.K.

3DIC Technology Drivers and Roadmaps

Monday, June 22nd, 2015

thumbnail

By Ed Korczynski, Sr. Technical Editor

After 15 years of targeted R&D, through-silicon via (TSV) formation technology has been established for various applications. Figure 1 shows that there are now detailed roadmaps for different types of 3-dimensional (3D) ICs well established in industry—first-order segmentation based on the wiring-level/partitioning—with all of the unit-processes and integration needed for reliable functionality shown. Using block-to-block integration with 5 micron lines at leading international IC foundries such as GlobalFoundries, systems stacking logic and memory such as the Hybrid Memory Cube (HMC) are now in production.

Fig. 1: Today’s 3D technology landscape segmented by wiring-level, showing cross-sections of typical 2-tier circuit stacks, and indicating planned reductions in contact pitches. (Source: imec)

“There are interposers for high-end complex SOC design with good yield,” informed Eric Beyne, Scientific Director Advanced Packaging & Interconnect for imec in an exclusive interview with Solid State Technology. ““For a systems company, once you’ve made the decision to go 3D there’s no way back,” said Beyne. “If you need high-bandwidth memory, for example, then you’re committed to some sort of 3D. The process is happening today.” Beyne is scheduled to talk about 3D technology driven by 3D application requirements in the imec Technology Forum to be held July 13 in San Francisco.

Adaptation of TSV for stacking of components into a complete functional system is key to high-volume demand. Phil Garrou, packaging technologist and SemiMD blogger, reported from the recent ConFab that Hynix is readying a second generation of high-bandwidth memory (HBM 2) for use in high performance computing (HPC) such as graphics, with products already announced like Pascal from Nvidia and Greenland from AMD.

For a normalized 1 cm2 of silicon area, wide-IO memory needs 1600 signal pins (not counting additional power and ground pins) so several thousand TSV are needed for high-performance stacked DRAM today, while in more advanced memory architectures it could go up by another factor of 10. For wide-IO HVM-2 (or Wide-IO2) the silicon consumed by IO circuitry is maybe 6 cm2 today, such that a 3D stack with shorter vertical connections would eliminate many of the drivers on the chip and would allow scaling of the micro-bumps to perhaps save a total of 4 cm2 in silicon area. 3D stacks provide such trade-offs between design and performance, so the best results are predicted for 3DICs where the partitioning can be re-done at the gate or transistor level. For example, a modern 8-core microprocessor could have over 50% of the silicon area consumed by L3-cache-memory and IO circuitry, and moving from 2D to 3D would reduce total wire-lengths and interconnect power consumptions by >50%.

There are inherent thresholds based on the High:Width ratio (H:W) that determine costs and challenges in process integration of TSV:

-    10:1 ratio is the limit for the use of relatively inexpensive physical vapor deposition (PVD) for the Cu barrier/seed (B/S),

-    20:1 ratio is the limit for the use of atomic-layer deposition (ALD) for B/S and electroless deposition (ELD) for Cu fill with 1.5 x 30 micron vias on the roadmap for the far future,

-    30:1 ratio and greater is unproven as manufacturable, though novel deposition technologies continue to be explored.

TSV Processing Results

The researchers at imec have evaluated different ways of connecting TSV to underlying silicon, and have determined that direct connections to micro-bumps are inherently superior to use of any re-distribution layer (RDL) metal. Consequently, there is renewed effort on scaling of micro-bump pitches to be able to match up with TSV. The standard minimum micro-bump pitch today of 40 micron has been shrunk to 20, and imec is now working on 10 micron with plans to go to 5 micron. While it may not help with TSV connections, an RDL layer may still be needed in the final stack and the Cu metal over-burden from TSV filling has been shown by imec to be sufficiently reproducible to be used as the RDL metal. The silicon surface area covered by TSV today is a few percents not 10s of percents, since the wiring level is global or semi-global.

Regarding the trade-offs between die-to-wafer (D2W) and wafer-to-wafer (W2W) stacking, D2W seems advantageous for most near-term solutions because of easier design and superior yield. D2W design is easier because the top die can be arbitrarily smaller silicon, instead of the identically sized chips needed in W2W stacks. Assuming the same defectivity levels in stacking, D2W yield will almost always be superior to W2W because of the ability to use strictly known-good-die. Still, there are high-density integration concepts out on the horizon that call for W2W stacking. Monolithic 3D (M3D) integration using re-grown active silicon instead of TSV may still be used in the future, but design and yield issues will be at least comparable to those of W2W stacking.

Beyne mentioned that during the recent ECTC 2015, EV Group showed impressive 250nm overlay accuracy on 450mm wafers, proving that W2W alignment at the next wafer size will be sufficient for 3D stacking. Beyne is also excited by the fact the at this year’s ECTC there was, “strong interest in thermo-compression bonding, with 18 papers from leading companies. It’s something that we’ve been working on for many years for die-to-wafer stacking, while people had mistakenly thought that it might be too slow or too expensive.”

Thermal issues for high-performance circuitry remain a potential issue for 3D stacking, particularly when working with finFETs. In 2D transistors the excellent thermal conductivity of the underlying silicon crystal acts like a built-in heat-sink to diffuse heat away from active regions. However, when 3D finFETs protrude from the silicon surface the main path for thermal dissipation is through the metal lines of the local interconnect stack, and so finFETs in general and stacks of finFETs in particular tend to induce more electro-migration (EM) failures in copper interconnects compared to 2D devices built on bulk silicon.

3D Designs and Cost Modeling

At a recent North California Chapter of the American Vacuum Society (NCCAVS) PAG-CMPUG-TFUG Joint Users Group Meeting discussing 3D chip technology held at Semi Global Headquarters in San Jose, Jun-Ho Choy of Mentor Graphics Corp. presented on “Electromigration Simulation Flow For Chip-Scale Parametric Failure Analysis.” Figure 2 shows the results from use of a physics-based model for temperature- and residual-stress-aware void nucleation and growth. Mentor has identified new failure mechanisms in TSV that are based on coefficient of thermal expansion (CTE) mismatch stresses. Large stresses can develop in lines near TSV during subsequent thermal processing, and the stress levels are layout dependent. In the worst cases the combined total stress can exceed the critical level required for void nucleation before any electrical stressing is applied. During electrical stress, EM voids were observed to initially nucleate under the TSV centers at the landing-pad interfaces even though these are the locations of minimal current-crowding, which requires proper modeling of CTE-mismatch induced stresses to explain.

Fig. 2: Calibration of an Electronic Design Automation (EDA) tool allows for accurate prediction of transistor performance depending on distance from a TSV. (Source: Mentor Graphics)

Planned for July 16, 2015 at SEMICON West in San Francisco, a presentation on “3DIC Technology Past, Present and Future” will be part of one of the side Semiconductor Technology Sessions (STS). Ramakanth Alapati, Director of Packaging Strategy and Marketing, GLOBALFOUNDRIES, will discuss the underlying economic, supply chain and technology factors that will drive productization of 3DIC technology as we know it today. Key to understanding the dynamic of technology adaptation is using performance/$ as a metric.

MicroWatt Chips shown at ISSCC

Thursday, March 5th, 2015

thumbnail

By Ed Korczynski, Sr. Technical Editor

With much of future demand for silicon ICs forecasted to be for mobile devices that must conserve battery power, it was natural for much of the focus at the just concluded 2015 International Solid State Circuits Conference (ISSCC) in San Francisco to be on ultra-low-power circuits that run on mere microWatts (µW). From analog to digital logic to radio-frequency (RF) chips and extending to complete system-on-chip (SoC) prototypes, silicon IC functionality is being designed with evolutionary and even revolutionary reductions in the operational power needed.

The figure shows a multi-standard 2.4 GHz radio that was co-developed by imec, Holst Centre, and Renesas using a 40nm node CMOS process. This was detailed in session 13.2 when Y.H. Liu presented “A 3.7mW-RX 4.4mW-TX Fully Integrated Bluetooth Low-Energy/IEEE802.15.4/Proprietary SoC with an ADPLL-Based Fast Frequency Offset Compensation in 40nm CMOS.” It uses a digital-intensive RF architecture tightly integrated with the digital baseband (DBB) and a microcontroller (MCU), and the digital-intensive RF design reduces the analog core area to 1.3mm2, and the DBB/MCU/SRAM occupies an area of 1.1mm2. This is an evolution of a previous 90nm RF front-end design that results in a reduced supply voltage (20 percent), power consumption (25 percent), and chip area (35 percent).

Ultra-low-power multi-standard 2.4 GHz radio compliant with Bluetooth Low Energy and ZigBee, co-developed by imec, Holst Centre, and Renesas. (Source: Renesas)

“From healthcare to smart buildings, ubiquitous wireless sensors connected through cellular devices are becoming widely used in everyday life,” said Harmke De Groot, Department Director at imec. “The radio consumes the majority of the power of the total system and is one of the most critical components to enable these emerging applications. Moreover, a low-cost area-efficient radio design is an important catalyst for developing small sensor applications, seamlessly integrated into the environment. Implementing an ultra-low power radio will increase the autonomy of the sensor device, increase its quality, functionality and performance and enable the reduction of the battery size, resulting in a smaller device, which in case of wearable systems, adds to user’s comfort.”

When most ICs were used in devices and systems that were powered by line current there was no advantage to minimizing power consumption, and so digital CMOS circuits could be designed with billions of transistors switching billions of times each second resulting in sufficient brute-force power to solve most problems. With power-consumption now a vital aspect of much of the demand for future chips, this year’s ISSCC offered the following tutorials on low-power chips:

  • “Ultra Low Power Wireless Systems” by Alison Burdett of Toumaz Group (UK),
  • “Low Power Near-threshold Design” by Dennis Sylvester of University of Michigan, and
  • “Analog Techniques for Low-Power Circuits” by Vadim Ivanov of Texas Instruments.

Then on Thursday the 26th, an entire short course was offered on “Circuit Design in Advanced CMOS Technologies:  How to Design with Lower Supply Voltages.” with lectures on the following:

  • “A Roadmap to Lower Supply Voltages – A System Perspective” by Jan M. Rabaey of UC Berkeley,
  • “Designing Ultra-Low-Voltage Analog and Mixed-Signal Circuits” by Peter Kinget of Columbia University,
  • “ACD Design in Scaled technologies” by Andrea Baschirotto of University of Milan-Bicocca, and
  • “Ultra-Low-Voltage RF Circuits and Transceivers” by Hyunchoi Shin of Kwangwoon University.

µW SoC Blocks

Session 5.10 covered “A 4.7MHz 53µW Fully Differential CMOS Reference Clock Oscillator with -22dB Worst-Case PSNR for Miniaturized SoCs” by J. Lee et al. of the Institute of Microelectronics (Singapore) along with researchers from KAIST and Daegu Gyeongbuk Institute of Science and Technology in Korea. While many SoCs for the IoT are intended for machine-to-machine networks, human interaction will still be needed for many applications so session 6.7 covered “A 2.3mW 11cm-Range Bootstrapped and Correlated-Double-Sampling (BCDS) 3D Touch Sensor for Mobile Devices” by L. Du et. al. from UCLA (California).

As indicated by the low MHz speed of the clock circuit referenced above, the only way that these ICs can consume 1/1000th of the power of mainstream chips is to operate at 1/1000th the speed. Also note that most of these chips will be made using 90nm- and 65nm-node fab processes, instead of today’s leading 22nm- and 14nm-node processes, as evidenced by session 8.3 covered “A 10.6µA/MHz at 16MHz Single-Cycle Non-Volatile Memory-Access Microcontroller with Full State Retention at 108nA in a 90nm Process” by V.K. Singhal et al. from the Kilby Labs of Texas Instruments (Bangalore, India). Session 18.3 covered “A 0.5V 54µW Ultra-Low-Power Recognition Processor with 93.5% Accuracy Geometric Vocabulary Tree and 47.5 Database Compression” by Y. Kim et al. of KAIST (Daejeon, Korea).

In the Low Power Digital sessions it was natural that ARM Cortex chips were the basis for two different presentations on ultra-low power functionality, since ARM cores power most of the world’s mobile processors, and since the RISC architecture of ARM was deliberately evolved for mobile applications. Session 8.1 covered “An 80nW Retention 11.7pJ/Cycle Active Subthreshold ARM Cortex-M0+ Subsystem in 65nm CMOS for WSN Applications” by J. Myers et al. of ARM (Cambridge, UK). In the immediately succeeding session 8.2, W. Lim et al. of the University of Michigan (Ann Arbor) presented on the possibilities for “Batteryless Sub-nW Cortex-M0+ Processor with Dynamic Leakage-Suppression Logic.”

nW Beyond Batteries

Session 5.4 covered “A 32nW Bandgap Reference Voltage Operational from 0.5V Supply for Ultra-Low Power Systems” by A. Shrivastava et al. of PsiKick (Charlottesville, VA). PsiKick’s silicon-proven ultra-low-power wireless sensing devices are based on over 10 years of development of Sub-Threshold (Sub-Vt) devices. They are claimed to operate at 1/100th to 1/1000th of the power budget of other low-power IC sensor platforms, allowing them to be powered without a battery from a variety of harvested energy sources. These SoCs include full sensor analog front-ends, programmable processing and memory, integrated power management, programmable hardware accelerators, and full RF (wireless) communication capabilities across multiple frequencies, all of which can be built with standard CMOS processes using standard EDA tools.

Extremely efficient energy harvesting was also shown by S. Stanzione et al. of Holst Centre/ imec/KU Leuven working with OMRON (Kizugawa, Japan) in session 20.8 “A 500nW Battery-less Integrated Electrostatic Energy Harvester Interface Based on a DC-DC Converter with 60V Maximum Input Voltage and Operating From 1μW Available Power, Including MPPT and Cold Start.” Such energy harvesting chips will power ubiquitous “smarts” embedded into the literal fabric of our lives. Smart clothes, smart cars, and smart houses will all augment our lives in the near future.

—E.K.

Directed Self Assembly Hot Topic at SPIE

Wednesday, February 25th, 2015

By Jeff Dorsch, contributing editor

At this week’s SPIE Advanced Lithography Symposium in San Jose, Calif., the hottest three-letter acronym is less EUV and more DSA, as in directed self-assembly.

Extreme-ultraviolet lithography continues to command much attention, yet this conference is awash in papers about DSA, which dominates the “Alternative Lithographic Technologies” track of technical sessions. The two-day poster sessions feature 15 posters about DSA. Thursday’s conference sessions include three separate sessions devoted to “DSA Design for Manufacturability” and one for “DSA Modeling.”

With semiconductor industry anxiety rising at the prospect of quadruple-patterning and the slow yet steady progress of EUV technology, directed self-assembly is being hailed and recognized as a way to simplify chip manufacturing at the low end of the nanoscale era.

Before the conference got under way, imec reported on making significant progress in DSA technology, specifically reducing the defectivity associated with the process. Working with Tokyo Electron Ltd. (TEL) and Merck, which acquired AZ Electronic Materials last year, imec has come up with a DSA solution for a via patterning process that they say is compatible with the 7-nanometer process node. The partners are targeting the manufacture of DRAMs using 193nm immersion scanners.

“Over the past few years, we have realized a reduction of DSA defectivity by a factor 10 every six months,” imec’s An Steegen said in a statement. “Together, with Merck and Tokyo Electron, providing state-of-the-art DSA materials and processing equipment, we are looking ahead at two different promising DSA processes that will further improve defectivity values in the coming months. Our processes show the potential to achieve single-digit defectivity values in the near future without any technical roadblocks lying ahead.”

Kurt Ronse of imec describes DSA as utilizing two polymers to get molecules to array in lines or spaces. The issue has been to avoid the creation of holes that don’t fit the guided pattern, resulting in defects.

“All the big [chip] companies are having their internal developments on DSA,” Ronse said at SPIE. “All the memory companies are interested; Micron is in our program.”

While DSA is being implemented with 193 immersion equipment at the outset, there is the possibility of working with EUV scanners in the future, according to Ronse, and imec has an extensive EUV research and development program, he noted.

DSA started to emerge as a technology of note at the 2011 SPIE Advanced Lithography conference, Ronse said, which resulted in imec initiating its program in the field. There has been a significant amount of progress in the past two years, he added.

The momentum behind DSA R&D led to the establishment of the 1st International Symposium on DSA, scheduled for October 26-27, 2015, in Leuven, Belgium. Partnering with imec on the conference are CEA-Leti, EIDEC, and Sematech.

DSA – it’s one TLA you’ll hear a lot about in the years to come.

Solid State Watch: February 13-19, 2015

Friday, February 20th, 2015
YouTube Preview Image

5nm Node Needs EUV for Economics

Thursday, January 29th, 2015

thumbnail

By Ed Korczynski, Sr. Technical Editor

#mce_temp_url#

At IEDM 2014 last month in San Francisco, Applied Materials sponsored an evening panel discussion on the theme of “How do we continue past 7nm?” Given that leading fabs are now ramping 14nm node processes, and exploring manufacturing options for the 10nm node, “past 7nm” means 5nm node processing. There are many device options possible, but cost-effective manufacturing at this scale will require Extreme Ultra-Violet (EUV) lithography to avoid the costs of quadruple-patterning.

Fig. 1: Panelists discuss future IC manufacturing and design possibilities in San Francisco on December 16, 2014. (Source: Pete Singer)

Figure 1 shows the panel being moderated by Professor Mark Rodwell of the University of California Santa Barbara, composed of the following industry experts:

  • Karim Arabi, Ph.D. – vice president, engineering, Qualcomm,
  • Michael Guillorn, Ph.D. – research staff member, IBM,
  • Witek Maszara, Ph.D. – distinguished member of technical staff, GLOBALFOUNDRIES,
  • Aaron Thean, Ph.D. – vice president, logic process technologies, imec, and
  • Satheesh Kuppurao, Ph.D. – vice president, front end products group, Applied Materials.

Arabi said that from the design perspective the overarching concern is to keep “innovating at the edge” of instantaneous and mobile processing. At the transistor level, the 10nm node process will be similar to that at the 14nm node, though perhaps with alternate channels. The 7nm node will be an inflection point with more innovation needed such as gate-all-around (GAA) nanowires in a horizontal array. By the 5nm node there’s no way to avoid tunnel FETs and III-V channels and possibly vertical nanowires, though self-heating issues could become very challenging. There’s no shortage of good ideas in the front end and lots of optimism that we’ll be able to make the transistors somehow, but the situation in the backend of on-chip metal interconnect is looking like it could become a bottleneck.

Guillorn extolled the virtues of embedded-memory to accelerate logic functions, as a great example of co-optimization at the chip level providing a real boost in performance at the system level. The infection at 7nm and beyond could lead to GAA Carbon Nano-Tube (CNT) as the minimum functional device. It’s limited to think about future devices only in terms of dimensional shrinks, since much of the performance improvement will come from new materials and new device and technology integration. In addition to concerns with interconnects, maintaining acceptable resistance in transistor contacts will be very difficult with reduced contact areas.

Maszara provided target numbers for a 5nm node technology to provide a 50% area shrink over 7nm:  gate pitch of 30nm, and interconnect level Metal 1 (M1) pitch of 20nm. To reach those targets, GLOBALFOUNDRIES’ cost models show that EUV with ~0.5 N.A. would be needed. Even if much of the lithography could use some manner of Directed Self-Assembly (DSA), EUV would still be needed for cut-masks and contacts. In terms of device performance, either finFET or nanowires could provide desired off current but the challenge then becomes how to get the on current for intended mobile applications? Alternative channels with high mobility materials could work but it remains to be seen how they will be integrated. A rough calculation of cost is the number of mask layers, and for 5nm node processing the cost/transistor could still go down if the industry has ideal EUV. Otherwise, the only affordable way to go may be stay at 7nm node specs but do transistor stacking.

Thein detailed why electrostatic scaling is a key factor. Parasitics will be extraordinary for any 5nm node devices due to the intrinsically higher number of surfaces and junctions within the same volume. Just the parasitic capacitances at 7nm are modeled as being 75% of the total capacitance of the chip. The device trend from planar to finFET to nanowires means proportionally increasing relative surface areas, which results in inherently greater sensitivity to surface-defects and interface-traps. Scaling to smaller structures may not help you if you loose most of the current and voltage in non-useful traps and defects, and that has already been seen in comparisons of III-V finFETs and nanowires. Also, 2D scaling of CMOS gates is not sustainable, and so one motivation for considering vertical transistors for logic at 5nm would be to allow for 20nm gates at 30nm pitch.

Kappurao reminded attendees that while there is still uncertainty regarding the device structures beyond 7nm, there is certainty in 4 trends for equipment processes the industry will need:

  1. everything is an interface requiring precision materials engineering,
  2. film depositions are either atomic-layer or selective films or even lattice-matched,
  3. pattern definition using dry selective-removal and directed self-assembly, and
  4. architecture in 3D means high aspect-ratio processing and non-equilibrium processing.

An example of non-equilibrium processing is single-wafer rapid-thermal-annealers (RTA) that today run for nanoseconds—providing the same or even better performance than equilibrium. Figure 2 shows that a cobalt-liner for copper lines along with a selective-cobalt cap provides a 10x improvement in electromigration compared to the previous process-of-record, which is an example of precision materials engineering solving scaling performance issues.

Fig. 2: ElectroMigration (EM) lifetimes for on-chip interconnects made with either conventional Cu or Cu lined and capped with Co, showing 10 times improvement with the latter. (Source: Applied Materials)

“We have to figure out how to control these materials,” reminded Kappurao. “At 5nm we’re talking about atomic precision, and we have to invent technologies that can control these things reliably in a manufacturable manner.” Whether it’s channel or contact or gate or interconnect, all the materials are going to change as we keep adding more functionality at smaller device sizes.

There is tremendous momentum in the industry behind density scaling, but when economic limits of 2D scaling are reached then designers will have to start working on 3D monolithic. It is likely that the industry will need even more integration of design and manufacturing, because it will be very challenging to keep the cost-per-function decreasing. After CMOS there are still many options for new devices to arrive in the form of spintronics or tunnel-FETs or quantum-dots.

However, Arabi reminded attendees as to why the industry has stayed with CMOS digital synchronous technology leading to design tools and a manufacturing roadmap in an ecosystem. “The industry hit a jackpot with CMOS digital. Let’s face it, we have not even been able to do asynchronous logic…even though people tried it for many years. My prediction is we’ll go as far as we can until we hit atomic limits.”

Next Page »