Part of the  

Solid State Technology

  and   

The Confab

  Network

About  |  Contact

Posts Tagged ‘IGZO’

Technologies for Advanced Systems Shown at IMEC Tech Forum USA

Tuesday, July 14th, 2015

thumbnail.

By Ed Korczynski, Sr. Technical Editor

Luc Van den hove, president and CEO, imec opened the Imec Technology Forum – USA in San Francisco on July 13 by reminding us of the grand vision and motivation behind the work of our industry to empower individuals with micro- and nano-technologies in his talk, “From the happy few to the happy many.” While the imec consortium continues to lead the world in pure materials engineering and device exploration, they now work on systems-integration complexities with over 100 applications partners from agriculture, energy, healthcare, and transportation industries.

We are now living in an era where new chip technologies require trade-offs between power, performance, and bandwidth, and such trade-offs must be carefully explored for different applications spaces such as cloud clusters or sensor nodes. An Steegen, senior vice president process technology, imec, discussed the details of new CMOS chip extensions as well as post-CMOS device possibilities for different applications spaces in her presentation on “Technology innovation: an IoT era.” EUV lithography technology continues to be developed, targeting a single-exposure using 0.33 Numerical Aperture (NA) reflective lenses to pattern features as small as 18nm half-pitch, which would meet the Metal1 density specifications for the industry’s so-called “7nm node.” Patterning below 12nm half-pitch would seem to need higher-NA which is not an automatic extension of current EUV technology.

So while there is now some clarity regarding the pre-competitive process-technologies that will be needed to fabricate next-generation device, there is less clarity regarding which new device structures will best serve the needs of different electronics applications. CMOS finFETs using strained silicon-doped-with-Germanium Si(Ge) will eventually be replaced by gate-all-around (GAA) nano-wires (NW) using alternate-channel materials (ACM) with higher mobilities such as Ge and indium-gallium-arsenide (InGaAs). While many measures of CMOS performance improve with scaling to smaller dimensions, eventually leakage current and parasitic capacitances will impede further progress.

Figure 1 shows a summary of energy-vs.-delay analyses by imec for all manner of devices which could be used as switches in logic arrays. Spin-wave devices such as spin-transfer-torque RAM (STT-RAM) can run at low power consumption but are inherently slower than CMOS devices. Tunnel-FET (TFET) devices can be as fast or faster than CMOS while running at lower operating power due to reduced electrostatics, leading to promising R&D work.

Fig.1: Energy vs. delay for various logic switches. (Source: imec)

In an exclusive interview, Steegen explained how the consortium balances the needs of all partners in R&D, “When you try to predict future roadmaps you prefer to start from the mainstream. Trying to find the mainstream, so that customers can build derivatives from that, is what imec does. We’re getting closer to systems, and systems are reaching down to technology,” said Steegen. “We reach out to each other, while we continue to be experts in our own domains. If I’m inserting future memory into servers, the system architecture needs to change so we need to talk to the systems people. It’s a natural trend that has evolved.”

Network effects from “the cloud” and from future smart IoT nets require high-bandwidth and so improved electrical and optical connections at multiple levels are being explored at imec. Joris Van Campenhout, program director optical I/O, imec, discussed “Scaling the cloud using silicon photonics.” The challenge is how to build a 100Gb/s bandwidth in the near term, and then scale to 400G and then 1.6T though parallelism of wavelength division multiplexing; the best results to date for a transmitter and receiver reach 50Gb/s. By leveraging the existing CMOS manufacturing and 3-D assembly infrastructure, the hybrid CMOS silicon photonics platform enables high integration density and reduced power consumption, as well as high yield and low manufacturing cost. Supported by EDA tools including those from Mentor Graphics, there have been 7 tape-outs of devices in the last year using a Process Design Kit (PDK). When combined with laser sources and a 40nm node foundry CMOS chip, a complete integrated solution exists. Arrays of 50Gb/s structures can allow for 400Gb/s solutions by next year, and optical backplanes for server farms in another few years. However, to bring photonics closer to the chip in an optical interposer will require radical new new approaches to reduce costs, including integration of more efficient laser arrays.

Alexander Mityashin, project manager thin film electronics, imec, explained why we need, “thin film electronics for smart applications.” There are billions of items in our world that could be made smarter with electronics, provided we can use additive thin-film processes to make ultra-low-cost thin-film transistors (TFT) that fit different market demands. Using amorphous indium-gallium-zinc-oxide (a-IGZO) deposited at low-temperature as the active layer on a plastic substrate, imec has been able to produce >10k TFTs/cm2 using just 4-5 lithography masks. Figure 2 shows these TFT integrated into a near-field communications (NFC) chip as first disclosed at ISSCC earlier this year in the paper, “IGZO thin-film transistor based flexible NFC tags powered by commercial USB reader device at 13.56MHz.” Working with Panasonic in 2013, imec showed a flexible organic light-emitting diode (OLED) display of just 0.15mm thickness that can be processed at 180°C. In collaboration with the Holst Center, they have worked on disposable flexible sensors that can adhere to human skin.

Fig.2: Thin-Film Transistors (TFT) fabricated on plastic using Flat Panel Display (FPD) manufacturing tools. (Source: imec/Holst Center)

Jim O’Neill, Chief Technology Officer of Entegris, expanded on the systems-level theme of the forum in his presentation on “Putting the pieces together – Materials innovation in a disruptive environment.” With so many additional materials being integrated into new device structures, there are inherently new yield-limiting defect mechanisms that will have to be controlled. With demand for chips now being driven primarily by high-volume consumer applications, the time between first commercial sample and HVM has compressed such that greater coordination is needed between device, equipment, and materials companies. For example, instead of developing a wet chemical formulation on a tool and then optimizing it with the right filter or dispense technology, the Process Engineer can start envisioning a “bottle-to-nozzle wetted surface solution.” By considering not just the intended reactions on the wafer but the unintended reactions that can occur up-steam and down-stream of the process chamber, full solutions to the semiconductor industry’s most challenging yield problems can be more quickly found.

—E.K.

NFC IGZO TFT for Game Cards

Thursday, November 20th, 2014

By Ed Korczynski, Senior Technical Editor, SemiMD

Thin-film transistors (TFT) made with indium-gallium-zinc-oxide (IGZO) can perform significantly better than TFTs made with low-temperature-poly-silicon (LTPS), and can be made ultra-thin and flexible for integration into a wide variety of devices. Researchers at the Holst Centre—an R&D incubator launched by the Belgian imec and the Dutch TNO in 2005—have been working on flexible TFTs for many years for many applications include flexible displays, intelligent food packaging, and paper identification (ID) documents. Now Holst Center is collaborating with Cartamundi NV, a world leader in production and sales of card and board games, to develop ultra-thin flexible near field communication (NFC) tags for game cards. The goal is an enhanced gaming experience that is interactive and intuitive.

Cartamundi creates specialized game cards such as these, and has been working on cards with embedded silicon NFC chips for many years. (Source: Cartamundi)

Cartamundi has been working on “iCards” that provide a connection between the physical products and the digital world for many years, and has recently claimed traction with games for the “connected generation”. By working with the Holst Centre to create IGZO TFTs on plastic, Cartamundi aims to lower overall costs while also creating both a thinner and a more robust NFC chip. Currently, Cartamundi NV embeds silicon-based NFC chips in their game cards, connecting traditional game play with electronic devices such as smartphones and tablets. The advanced IGZO TFT technology should improve and broaden the applicability of interactive technology for game cards, compared to the currently-used silicon based NFC chips.

Chris Van Doorslaer, chief executive officer of Cartamundi, said, “Cartamundi is committed to creating products that connect families and friends of every generation to enhance the valuable quality time they share during the day. With Holst Centre’s and imec’s thin-film and nano-electronics expertise, we’re connecting the physical with the digital which will enable lightweight smart devices with additional value and content for consumers.”

“Not only will Cartamundi be working on the NFC chip of the future, but it will also reinvent the industry’s standards in assembly process and the conversion into game cards,” says Steven Nietvelt, chief innovation and marketing officer at Cartamundi. “All of this is part of an ongoing process of technological innovation inside Cartamundi. I am glad our innovation engineers will collaborate with the strongest technological researchers and developers in the field at imec and Holst Centre. We are going to need all expertise on board. Because basically what we are creating is game-changing technology.”

The major challenges are two-fold:  low-temperature formation of the IGZO layer, and integration of the IGZO into a complex NFC circuit on plastic. Control of surface states and defect densities is always essential for the production of any working semiconductor device, and defects act as traps for electrons flowing through circuitry. Consequently, for TFT instead of bulk crystal devices the precise control of the many deposited thin-films is essential.

Holst Centre, imec and Cartamundi engineers will look into NFC circuit design and TFT processing options, and will investigate routes for up-scaling of Holst processes to run on large production presses. By keeping the IGZO TFT manufacturing costs low, the flexible chips are intended to be a critical part of Cartamundi’s larger strategy of developing game cards for the connected generation.

“Imec and Holst Centre aim to shape the future and our collaboration with Cartamundi will do so for the future of gaming technology and connected devices,” says Paul Heremans, Department Director Thin Film Electronics at imec and Technology Director at the Holst Centre. “Chip technology has penetrated society’s daily life right down to game cards. We are excited to work with Cartamundi to improve the personal experience that gaming delivers.”

While game cards may not seem as important as healthcare and communications, flexible NFC integration into cards could generate IGZO TFT production volumes that are game changing.

—E.K.


Extension Media websites place cookies on your device to give you the best user experience. By using our websites, you agree to placement of these cookies and to our Privacy Policy. Please click here to accept.