Part of the  

Solid State Technology

  and   

The Confab

  Network

About  |  Contact

Posts Tagged ‘HMC’

3DIC Technology Drivers and Roadmaps

Monday, June 22nd, 2015

thumbnail

By Ed Korczynski, Sr. Technical Editor

After 15 years of targeted R&D, through-silicon via (TSV) formation technology has been established for various applications. Figure 1 shows that there are now detailed roadmaps for different types of 3-dimensional (3D) ICs well established in industry—first-order segmentation based on the wiring-level/partitioning—with all of the unit-processes and integration needed for reliable functionality shown. Using block-to-block integration with 5 micron lines at leading international IC foundries such as GlobalFoundries, systems stacking logic and memory such as the Hybrid Memory Cube (HMC) are now in production.

Fig. 1: Today’s 3D technology landscape segmented by wiring-level, showing cross-sections of typical 2-tier circuit stacks, and indicating planned reductions in contact pitches. (Source: imec)

“There are interposers for high-end complex SOC design with good yield,” informed Eric Beyne, Scientific Director Advanced Packaging & Interconnect for imec in an exclusive interview with Solid State Technology. ““For a systems company, once you’ve made the decision to go 3D there’s no way back,” said Beyne. “If you need high-bandwidth memory, for example, then you’re committed to some sort of 3D. The process is happening today.” Beyne is scheduled to talk about 3D technology driven by 3D application requirements in the imec Technology Forum to be held July 13 in San Francisco.

Adaptation of TSV for stacking of components into a complete functional system is key to high-volume demand. Phil Garrou, packaging technologist and SemiMD blogger, reported from the recent ConFab that Hynix is readying a second generation of high-bandwidth memory (HBM 2) for use in high performance computing (HPC) such as graphics, with products already announced like Pascal from Nvidia and Greenland from AMD.

For a normalized 1 cm2 of silicon area, wide-IO memory needs 1600 signal pins (not counting additional power and ground pins) so several thousand TSV are needed for high-performance stacked DRAM today, while in more advanced memory architectures it could go up by another factor of 10. For wide-IO HVM-2 (or Wide-IO2) the silicon consumed by IO circuitry is maybe 6 cm2 today, such that a 3D stack with shorter vertical connections would eliminate many of the drivers on the chip and would allow scaling of the micro-bumps to perhaps save a total of 4 cm2 in silicon area. 3D stacks provide such trade-offs between design and performance, so the best results are predicted for 3DICs where the partitioning can be re-done at the gate or transistor level. For example, a modern 8-core microprocessor could have over 50% of the silicon area consumed by L3-cache-memory and IO circuitry, and moving from 2D to 3D would reduce total wire-lengths and interconnect power consumptions by >50%.

There are inherent thresholds based on the High:Width ratio (H:W) that determine costs and challenges in process integration of TSV:

-    10:1 ratio is the limit for the use of relatively inexpensive physical vapor deposition (PVD) for the Cu barrier/seed (B/S),

-    20:1 ratio is the limit for the use of atomic-layer deposition (ALD) for B/S and electroless deposition (ELD) for Cu fill with 1.5 x 30 micron vias on the roadmap for the far future,

-    30:1 ratio and greater is unproven as manufacturable, though novel deposition technologies continue to be explored.

TSV Processing Results

The researchers at imec have evaluated different ways of connecting TSV to underlying silicon, and have determined that direct connections to micro-bumps are inherently superior to use of any re-distribution layer (RDL) metal. Consequently, there is renewed effort on scaling of micro-bump pitches to be able to match up with TSV. The standard minimum micro-bump pitch today of 40 micron has been shrunk to 20, and imec is now working on 10 micron with plans to go to 5 micron. While it may not help with TSV connections, an RDL layer may still be needed in the final stack and the Cu metal over-burden from TSV filling has been shown by imec to be sufficiently reproducible to be used as the RDL metal. The silicon surface area covered by TSV today is a few percents not 10s of percents, since the wiring level is global or semi-global.

Regarding the trade-offs between die-to-wafer (D2W) and wafer-to-wafer (W2W) stacking, D2W seems advantageous for most near-term solutions because of easier design and superior yield. D2W design is easier because the top die can be arbitrarily smaller silicon, instead of the identically sized chips needed in W2W stacks. Assuming the same defectivity levels in stacking, D2W yield will almost always be superior to W2W because of the ability to use strictly known-good-die. Still, there are high-density integration concepts out on the horizon that call for W2W stacking. Monolithic 3D (M3D) integration using re-grown active silicon instead of TSV may still be used in the future, but design and yield issues will be at least comparable to those of W2W stacking.

Beyne mentioned that during the recent ECTC 2015, EV Group showed impressive 250nm overlay accuracy on 450mm wafers, proving that W2W alignment at the next wafer size will be sufficient for 3D stacking. Beyne is also excited by the fact the at this year’s ECTC there was, “strong interest in thermo-compression bonding, with 18 papers from leading companies. It’s something that we’ve been working on for many years for die-to-wafer stacking, while people had mistakenly thought that it might be too slow or too expensive.”

Thermal issues for high-performance circuitry remain a potential issue for 3D stacking, particularly when working with finFETs. In 2D transistors the excellent thermal conductivity of the underlying silicon crystal acts like a built-in heat-sink to diffuse heat away from active regions. However, when 3D finFETs protrude from the silicon surface the main path for thermal dissipation is through the metal lines of the local interconnect stack, and so finFETs in general and stacks of finFETs in particular tend to induce more electro-migration (EM) failures in copper interconnects compared to 2D devices built on bulk silicon.

3D Designs and Cost Modeling

At a recent North California Chapter of the American Vacuum Society (NCCAVS) PAG-CMPUG-TFUG Joint Users Group Meeting discussing 3D chip technology held at Semi Global Headquarters in San Jose, Jun-Ho Choy of Mentor Graphics Corp. presented on “Electromigration Simulation Flow For Chip-Scale Parametric Failure Analysis.” Figure 2 shows the results from use of a physics-based model for temperature- and residual-stress-aware void nucleation and growth. Mentor has identified new failure mechanisms in TSV that are based on coefficient of thermal expansion (CTE) mismatch stresses. Large stresses can develop in lines near TSV during subsequent thermal processing, and the stress levels are layout dependent. In the worst cases the combined total stress can exceed the critical level required for void nucleation before any electrical stressing is applied. During electrical stress, EM voids were observed to initially nucleate under the TSV centers at the landing-pad interfaces even though these are the locations of minimal current-crowding, which requires proper modeling of CTE-mismatch induced stresses to explain.

Fig. 2: Calibration of an Electronic Design Automation (EDA) tool allows for accurate prediction of transistor performance depending on distance from a TSV. (Source: Mentor Graphics)

Planned for July 16, 2015 at SEMICON West in San Francisco, a presentation on “3DIC Technology Past, Present and Future” will be part of one of the side Semiconductor Technology Sessions (STS). Ramakanth Alapati, Director of Packaging Strategy and Marketing, GLOBALFOUNDRIES, will discuss the underlying economic, supply chain and technology factors that will drive productization of 3DIC technology as we know it today. Key to understanding the dynamic of technology adaptation is using performance/$ as a metric.

3D memory for future nanoelectronic systems

Wednesday, June 18th, 2014

thumbnail

By Ed Korczynski, Sr. Technical Editor

The future of 3D memory will be in application-specific packages and systems. That is how innovation continues when simple 2D scaling reaches atomic-limits, and deep work on applications is now part of what global research and development (R&D) consortium Imec does. Imec is now 30 years old, and the annual Imec Technology Forum held in the first week of June in Brussels, Belgium included fun birthday celebrations and very serious discussions of the detailed R&D needed to push nanoelectronics systems into health-care, energy, and communications markets.

3D memory will generally cost more than 2D memory, so generally a system must demand high speed or small size to mandate 3D. Communications devices and cloud servers need high speed memory. Mobile and portable personalized health monitors need low power memory. In most cases, the optimum solution does not necessarily need more bits, but perhaps faster bits or more reliable bits. This is why the Hybrid Memory Cube (HMC) provides >160Gb/sec data transfer with Through-Silicon Vias (TSV) through 3D stacked DRAM layers.

“We’re not adding 70-80% more bits like we used to per generation, or even the 40% recently,” explained Mark Durcan, chief executive officer of Micron Technology. “DRAM bits will only grow at the low to mid-20%.” With those numbers come hopes of more stability and less volatility in the DRAM business. Likewise, despite the bit growth rates of the recent past, NAND is moving to 30-40%  bit-increase per new ‘generation.’

“Moore’s Law is not over, it’s just slowing,” declared Durcan. “With NAND, we’re moving from planar to 3D, and the innovation is that there are different ways of doing 3D.” Figure 1 shows the six different options that Micron defines for 3D NAND. Micron plans for future success in the memory business to be not just about bit-growth, but about application-specific memory solutions.

Fig. 1: Different options for Vertical NAND (VNAND) Flash memory design, showing cell layouts and key specifications. (Source: Micron Technology)

E. S. Jung, executive vice president Samsung Electronics, presented an overview of how “Samsung’s Breaking the Limits of Semiconductor Technology for the Future” at the Imec forum. Samsung Semiconductor announced it’s first DRAM product in 1984, and has been improving it’s capabilities in design and manufacturing ever since. Samsung also sees the future of memory chips as part of application-specific systems, and suggests that all of the innovation in end-products we envision for the future cannot occur without semiconductor memory.

Samsung’s world leading 3D vertical-NAND (VNAND) chips are based on simultaneous innovation in three different aspects of materials and design:

1)    Material changed from floating-gate,

2)    Rotated structure from horizontal to vertical (and use Gate All Around), and

3)    Stacked layers.

To accomplish these results, partners were needed from OEM and specialty-materials suppliers during the R&D of the special new hard-mask process needed to be able to form 2.5B vias with extremely high aspect-ratios.

Rick Gottscho, executive vice president of the global products group Lam Research Corp., in an exclusive interview with SST/SemiMD, explained that with proper control of hardmask deposition and etch processes the inherent line-edge-roughness (LER) of photoresist (PR) can be reduced. This sort of integrated process module can be developed independently by an OEM like Lam Research, but proving it in a device structure with other complex materials interactions requires collaboration with other leading researchers, and so Lam Research is now part of a new ‘Supplier Hub’ relationship at Imec.

Luc Van den hove, president and chief executive officer of Imec, commented, “we have been working with equipment and materials suppliers form the beginning, but we’re upgrading into this new ‘Supplier Hub.’ In the past most of the development occurred at the suppliers’ facilities and then results moved to Imec. Last year we announced a new joint ‘patterning center’ with ASML, and they’re transferring about one hundred people from Leuven. Today we announced a major collaboration with Lam Research. This is not a new relationship, since we’ve been working with Lam for over 20 years, but we’re stepping it up to a new level.”

Commitment, competence, and compromise are all vital to functional collaboration according to Aart J. de Geus, chairman and co-chief executive officer of Synopsys. Since he has long lead a major electronic design automation (EDA) company, de Geus has seen electronics industry trends over the 30 years that Imec has been running. Today’s advanced systems designs require coordination among many different players within the electronics industry ecosystem (Figure 2), with EDA and manufacturing R&D holding the center of innovation.

Fig. 2: Semiconductor manufacturing and design drive technology innovation throughout the global electronics industry. (Source: Synopsys)

“The complexity of what is being built is so high that the guarantee that what has been built will work is a challenge,” cautioned de Geus. Complexity in systems is a multiplicative function of the number of components, not a simple summation. Consequently, design verification is the greatest challenge for complex System-on-Chips (SoC). Faster simulation has always been the way to speed up verification, and future hardware and software need co-optimization. “How do you debug this, because that is 70% of the design time today when working with SoCs containing re-used IP? This will be one of the limiters in terms of product schedules,” advised de Geus.

Whether HMC stacks of DRAM, VNAND, or newer memory technologies such as spintronics or Resistive RAM (RRAM), nanoscale electronic systems will use 3D memories to reduce volume and signal delays. “Today we’re investigating all of the technologies needed to advance IC manufacturing below 10nm,” said Van den hove. The future of 3D memories will be complex, but industry R&D collaboration is preparing the foundation to be able to build such complex structures.

DISCLAIMER:  Ed Korczynski has or had a consulting relationship with Lam Research.


Extension Media websites place cookies on your device to give you the best user experience. By using our websites, you agree to placement of these cookies and to our Privacy Policy. Please click here to accept.