Part of the  

Solid State Technology

  and   

The Confab

  Network

About  |  Contact

Posts Tagged ‘DSA’

SPIE Advanced Lithography conference concludes

Friday, February 27th, 2015

By Jeff Dorsch, contributing editor

Exposures, and reducing their cost, were a theme running through the 2015 SPIE Advanced Lithography Symposium this week in San Jose, Calif., the center of Silicon Valley.

Doubts about the continued viability of Moore’s Law abound as the 50th anniversary of Gordon Moore’s historic article for Electronics magazine draws near. Lithographers are under immense industry pressure to lower the operating costs of lithography cells in the fab while increasing wafer throughput.

“Enabling,” “productivity,” and “stability” were watchwords frequently repeated throughout the conference. The various merits (and occasional demerits) of electron-beam, extreme-ultraviolet, 193i immersion and nanoimprint lithography technologies were debated and touted over four days.

One of the technical sessions closing out Wednesday at the San Jose Convention Center was devoted to papers on “Multibeam Lithography,” especially e-beam direct-write technology, which has been seen as “pie in the sky” for many years, yet seems closer to realization than before.

Hans Loeschner of IMS Nanofabrication described how his company’s e-beam tool has progressed from alpha to beta status this year, and predicted it would be ready for production applications in 2016. Altera, CEA-Leti, and MAPPER Lithography presented a total of three papers on MAPPER’s FLX-1200 e-beam direct-write system, saying it is better able to make chips with 20-nanometer features than an immersion lithography system.

The eBeam Initiative held its annual luncheon at SPIE Advanced Lithography on Tuesday, emphasizing how multibeam mask writing, model-based mask data preparation, and complex inverse lithography technology can enable continued density scaling at the 10-nanometer process node.

“We have reached a point with traditional rules-based designs where the rules are so conservative and the implementation costs are so high that the semiconductor industry has started to lose the economic benefits of scaling to smaller design nodes for system-on-chip designs,” D2S CEO Aki Fujimura said in a statement. “A simulation-based approach combining complex ILT, MB-MDP and existing variable shaped beam mask writers in parallel with the impending emergence of multibeam mask writing are providing platforms to enable the semiconductor industry to reverse this trend and reactivate the density benefits associated with Moore’s Law.”

EUV, another technology that has had a long gestation, was the subject of a conference track over all four days, with photomask and photoresist issues being discussed in several sessions.

The news that Taiwan Semiconductor Manufacturing was able to process 1,022 wafers in 24 hours with ASML Holding’s NXE:3300B scanner was the talk of the SPIE conference on Tuesday, the first day of the two-day exhibition, which had about 60 companies occupying booths. ASML didn’t declare an end to development of its EUV systems, saying there is more work to be done. This includes development of a pellicle for the scanner’s reticles and working with resist suppliers on formulas for EUV resists.

While improvements in all types of lithographies were discussed at the conference, there was increased interest in directed self-assembly, which employs polymers to get molecules to arrange themselves in lines and spaces with a patterning guide. Advances in reducing the defectivity of DSA were reported by imec, Merck, and Tokyo Electron.

Global interest in DSA over the past four years has accelerated due to “other things getting delayed,” said Tom Ferry of Synopsys. Among other initiatives, the electronic design automation software and services company was talking about how its S-Litho molecular simulator, S-Litho shape optimizer, and Proteus ILT guide patterning tool can help enable DSA research and development, design, and manufacturing.

The Belgium-based imec was a big contributor to conference presentations, with a first author on 18 papers and posters, and a co-author of 25 publications.

While EUV garnered headlines during SPIE Advanced Lithography, the Cymer subsidiary of ASML was at the conference to talk about its third-generation XLR 700ix light source for deep-ultraviolet lithography systems. Ted Cacouris of Cymer said, “10 nanometer is basically done with DUV. It could go to 7 nanometer; immersion could be extended. It could be complementary to EUV.”

Cymer also announced its DynaPulse program, an upgrade for its OnPulse subscription service for maintenance and repair of light sources. In 2012, prior to the company’s acquisition by ASML, Cymer derived nearly 70 percent of its light-source revenue from the OnPulse service program.

It’s been an interesting week, with about 2,400 attendees from around the world gathering for the premier lithography conference of the year. They will convene again a year from now to learn what’s new in lithography.

Directed Self Assembly Hot Topic at SPIE

Wednesday, February 25th, 2015

By Jeff Dorsch, contributing editor

At this week’s SPIE Advanced Lithography Symposium in San Jose, Calif., the hottest three-letter acronym is less EUV and more DSA, as in directed self-assembly.

Extreme-ultraviolet lithography continues to command much attention, yet this conference is awash in papers about DSA, which dominates the “Alternative Lithographic Technologies” track of technical sessions. The two-day poster sessions feature 15 posters about DSA. Thursday’s conference sessions include three separate sessions devoted to “DSA Design for Manufacturability” and one for “DSA Modeling.”

With semiconductor industry anxiety rising at the prospect of quadruple-patterning and the slow yet steady progress of EUV technology, directed self-assembly is being hailed and recognized as a way to simplify chip manufacturing at the low end of the nanoscale era.

Before the conference got under way, imec reported on making significant progress in DSA technology, specifically reducing the defectivity associated with the process. Working with Tokyo Electron Ltd. (TEL) and Merck, which acquired AZ Electronic Materials last year, imec has come up with a DSA solution for a via patterning process that they say is compatible with the 7-nanometer process node. The partners are targeting the manufacture of DRAMs using 193nm immersion scanners.

“Over the past few years, we have realized a reduction of DSA defectivity by a factor 10 every six months,” imec’s An Steegen said in a statement. “Together, with Merck and Tokyo Electron, providing state-of-the-art DSA materials and processing equipment, we are looking ahead at two different promising DSA processes that will further improve defectivity values in the coming months. Our processes show the potential to achieve single-digit defectivity values in the near future without any technical roadblocks lying ahead.”

Kurt Ronse of imec describes DSA as utilizing two polymers to get molecules to array in lines or spaces. The issue has been to avoid the creation of holes that don’t fit the guided pattern, resulting in defects.

“All the big [chip] companies are having their internal developments on DSA,” Ronse said at SPIE. “All the memory companies are interested; Micron is in our program.”

While DSA is being implemented with 193 immersion equipment at the outset, there is the possibility of working with EUV scanners in the future, according to Ronse, and imec has an extensive EUV research and development program, he noted.

DSA started to emerge as a technology of note at the 2011 SPIE Advanced Lithography conference, Ronse said, which resulted in imec initiating its program in the field. There has been a significant amount of progress in the past two years, he added.

The momentum behind DSA R&D led to the establishment of the 1st International Symposium on DSA, scheduled for October 26-27, 2015, in Leuven, Belgium. Partnering with imec on the conference are CEA-Leti, EIDEC, and Sematech.

DSA – it’s one TLA you’ll hear a lot about in the years to come.

Proponents of EUV, immersion lithography face off at SPIE

Wednesday, February 25th, 2015

By Jeff Dorsch, contributing editor

The two main camps in optical lithography are arrayed for battle at the SPIE Advanced Lithography Symposium in San Jose, Calif.

Extreme-ultraviolet lithography, on one side, is represented by ASML Holding, its Cymer subsidiary, and ASML’s EUV customers, notably Intel, Samsung Electronics, and Taiwan Semiconductor Manufacturing.

On the other side is 193i immersion lithography, represented by Nikon and its customers, which also include Intel and other leading chipmakers.

There are other lithography technologies being discussed at the conference, of course. They are bit players in the drama, so to speak, although there is a lot of discussion and buzz about directed self-assembly technology this week.

ASML broke big news on Tuesday morning, reporting that Taiwan Semiconductor Manufacturing was able to expose more than 1,000 wafers in one day this year with ASML’s NXE:3300B EUV system. “During a recent test run on an NXE:3300B EUV system we exposed 1,022 wafers in 24 hours with sustained power of over 90 watts,” Anthony Yen, TSMC’s director of research and development, said at SPIE.

While ASML was obviously and justifiably proud of this milestone, after achieving its 2014 goal of producing 500 wafers per day, it cautioned that more development remains for EUV technology.

“The test run at TSMC demonstrates the capability of the NXE:3300B scanner, and moves us closer to our stated target of sustained output of 1,000 wafers per day in 2015,” ASML’s Hans Meiling, vice president service and product marketing EUV, said in a statement. “We must continue to increase source power, improve system availability, and show this result at multiple customers over multiple days.”

The day before, Cymer announced the first shipment of its XLR 700ix light source, which is said to improver scanner throughput and process stability for manufacturing chips with 14-nanometer features. The company also debuted DynaPulse as an upgrade option for its OnPulse customers. The XLR 700ix and DynaPulse together are said to offer better on-wafer critical dimension uniformity and provide stable on-wafer performance.

Another revelation at SPIE is that SK Hynix has been working with the NXE:3300, too, and is pleased with the system’s capabilities. According to Chang-Moon Lim, who spoke Monday morning, SK Hynix was recently able to expose 1,670 wafers over three days, with uptime of 86.3 percent over that period.

“Progress has been significant on various aspects, which should not be overshadowed by the delay of [light] sources,” he said of ASML’s EUV systems.

The Korean chipmaker is exploring how it could work without pellicles on the EUV reticle, Lim noted. ASML has been developing a pellicle, made with polycrystalline silicon, in cooperation with Intel and others.

Nikon Precision and other Nikon subsidiaries didn’t issue any press releases at SPIE. The companies presented much information at Sunday’s LithoVision 2015 event, held at the City National Civic auditorium, across the street from the San Jose Convention Center, where SPIE Advanced Lithography is staged.

On offer at the Nikon conference was the claimed superiority of 193i immersion lithography equipment to EUV systems for the 14nm, 7nm and future process nodes. Donis Flagello, Nikon Research Corp. of America’s president, CEO, and chief operating officer, emphasized that message on Tuesday morning with an invited paper on “Evolving optical lithography without EUV.”

Nikon’s champion machine is the NSR-S630D immersion scanner, which was touted throughout the LithoVision event. The system is capable of exposing 250 wafers per hour, according to Nikon’s Yuichi Shibazaki.

Ryoichi Kawaguchi of Nikon told attendees, “EUV lithography needs more stability and improvement.” He also brought up the topic of manufacturing on 450-millimeter wafers, which has mostly gone ignored in the lithography competition. Nikon will ship a 450mm system this spring to the Global 450 Consortium in Albany, N.Y., Kawaguchi said. The bigger substrates could provide “an alternative option to reduce cost,” he added.

Erik Byers of Micron Technology observed, “EUV is not a panacea.”

Which lithography technology will prevail in high-volume manufacturing? The question may not be definitively answered for some time.

SPIE Photomask Technology Wrap-up

Tuesday, September 23rd, 2014

Extreme-ultraviolet lithography was a leading topic at the SPIE Photomask Technology conference and exhibition, held September 16-17-18 in Monterey, Calif., yet it wasn’t the only topic discussed and examined. Mask patterning, materials and process, metrology, and simulation, optical proximity correction (OPC), and mask data preparation were extensively covered in conference sessions and poster presentations.

Even with the wide variety of topics on offer at the Monterey Conference Center, many discussions circled back to EUV lithography. After years of its being hailed as the “magic bullet” in semiconductor manufacturing, industry executives and engineers are concerned that the technology will have a limited window of usefulness. Its continued delays have led some to write it off for the 10-nanometer and 7-nanometer process nodes.

EUV photomasks were the subject of three conference sessions and the focus of seven posters. There were four posters devoted to photomask inspection, an area of increasing concern as detecting and locating defects in a mask gets more difficult with existing technology.

The conference opened Tuesday, Sept. 16, with the keynote presentation by Martin van den Brink, the president and chief technology officer of ASML Holding. His talk, titled “Many Ways to Shrink: The Right Moves to 10 Nanometer and Beyond,” was clearly meant to provide some reassurance to the attendees that progress is being made with EUV.

He reported his company’s “30 percent improvement in overlay and focus” with its EUV systems in development. ASML has shipped six EUV systems to companies participating in the technology’s development (presumably including Intel, Samsung Electronics, and Taiwan Semiconductor Manufacturing, which have made equity investments in ASML), and it has five more being integrated at present, van den Brink said.

The light source being developed by ASML’s Cymer subsidiary has achieved an output of 77 watts, he said, and the company expects to raise that to 81 watts by the end of 2014. The key figure, however, remains 100 watts, which would enable the volume production of 1,000 wafers per day. No timeline on that goal was offered.

The ASML executive predicted that chips with 10nm features would mostly be fabricated with immersion lithography systems, with EUV handling the most critical layers. For 7nm chips, immersion lithography systems will need 34 steps to complete the patterning of the chip design, van den Brink said. At that process node, EUV will need only nine lithography steps to get the job done, he added.

Among other advances, EUV will require actinic mask inspection tools, according to van den Brink. Other speakers at the conference stressed this future requirement, while emphasizing that it is several years away in implementation.

Mask making is moving from detecting microscopic defects to an era of mesoscopic defects, according to Yalin Xiong of KLA-Tencor. Speaking during the “Mask Complexity: How to Solve the Issues?” panel discussion on Thursday, Sept. 18, Xiong said actinic mask inspection will be “available only later, and it’s going to be costly.” He predicted actinic tools will emerge by 2017 or 2018. “We think the right solution is the actinic solution,” Xiong concluded.

Peter Buck of Mentor Graphics, another panelist at the Sept. 18 session, said it was necessary to embrace mask complexity in the years to come. “Directed self-assembly has the same constraints as EUV and DUV (deep-ultraviolet),” he observed.

People in the semiconductor industry place high values on “good,” “fast,” and “cheap,” Buck noted. With the advent of EUV lithography and its accompanying challenges, one of those attributes will have to give way, he said, indicating cheapness was the likely victim.

Mask proximity correction (MPC) and Manhattanization will take on increasing importance, Buck predicted. “MPC methods can satisfy these complexities,” he said.

For all the concern about EUV and the ongoing work with that technology, the panelists looked ahead to the time when electron-beam lithography systems with multiple beams will become the litho workhorses of the future.

Mask-writing times were an issue touched upon by several panelists. Shusuke Yoshitake of NuFlare Technology reported hearing about a photomask design that took 60 hours to write. An extreme example, to be sure, but next-generation multi-beam mask writers will help on that front, he said.

Daniel Chalom of IMS Nanofabrication said that with 20nm chips, the current challenge is reduce mask-writing times to less than 15 hours.

In short, presenters at the SPIE conference were optimistic and positive about facing the many challenges in photomask design, manufacturing, inspection, metrology, and use. They are confident that the technical hurdles can be overcome in time, as they have in the past.

Research Alert: March 18, 2014

Tuesday, March 18th, 2014

Creating a graphene-metal sandwich to improve electronics

Researchers have discovered that creating a graphene-copper-graphene “sandwich” strongly enhances the heat conducting properties of copper, a discovery that could further help in the downscaling of electronics.

The work was led by Alexander A. Balandin, a professor of electrical engineering at the Bourns College of Engineering at the University of California, Riverside and Konstantin S. Novoselov, a professor of physics at the University of Manchester in the United Kingdom. Balandin and Novoselov are corresponding authors for the paper just published in the journal Nano Letters. In 2010, Novoselov shared the Nobel Prize in Physics with Andre Geim for their discovery of graphene.

In the experiments, the researchers found that adding a layer of graphene, a one-atom thick material with highly desirable electrical, thermal and mechanical properties, on each side of a copper film increased heat conducting properties up to 24 percent.

“This enhancement of copper’s ability to conduct heat could become important in the development of hybrid copper — graphene interconnects for electronic chips that continue to get smaller and smaller,” said Balandin, who in 2013 was awarded the MRS Medal from the Materials Research Society for discovery of unusual heat conduction properties of graphene.

Whether the heat conducting properties of copper would improve by layering it with graphene is an important question because copper is the material used for semiconductor interconnects in modern computer chips. Copper replaced aluminum because of its better electrical conductivity.

Surface characteristics influence cellular growth on semiconductor material

Changing the texture and surface characteristics of a semiconductor material at the nanoscale can influence the way that neural cells grow on the material.

The finding stems from a study performed by researchers at North Carolina State University, the University of North Carolina at Chapel Hill and Purdue University, and may have utility for developing future neural implants.

“We wanted to know how a material’s texture and structure can influence cell adhesion and differentiation,” says Lauren Bain, lead author of a paper describing the work and a Ph.D. student in the joint biomedical engineering program at NC State and UNC-Chapel Hill. “Basically, we wanted to know if changing the physical characteristics on the surface of a semiconductor could make it easier for an implant to be integrated into neural tissue – or soft tissue generally.”

The researchers worked with gallium nitride (GaN), because it is one of the most promising semiconductor materials for use in biomedical applications. They also worked with PC12 cells, which are model cells used to mimic the behavior of neurons in lab experiments.

In the study, the researchers grew PC12 cells on GaN squares with four different surface characteristics: some squares were smooth; some had parallel grooves (resembling an irregular corduroy pattern); some were randomly textured (resembling a nanoscale mountain range); and some were covered with nanowires (resembling a nanoscale bed of nails).

Very few PC12 cells adhered to the smooth surface. And those that did adhere grew normally, forming long, narrow extensions. More PC12 cells adhered to the squares with parallel grooves, and these cells also grew normally.

About the same number of PC12 cells adhered to the randomly textured squares as adhered to the parallel grooves. However, these cells did not grow normally. Instead of forming narrow extensions, the cells flattened and spread across the GaN surface in all directions.

More PC12 cells adhered to the nanowire squares than to any of the other surfaces, but only 50 percent of the cells grew normally. The other 50 percent spread in all directions, like the cells on the randomly textured surfaces.

“This tells us that the actual shape of the surface characteristics influences the behavior of the cells,” Bain says. “It’s a non-chemical way of influencing the interaction between the material and the body. That’s something we can explore as we continue working to develop new biomedical technologies.”

First methodology to analyze nanometer line pattern images

In the study, the researchers grew PC12 cells on GaN squares with four different surface characteristics: some squares were smooth; some had parallel grooves (resembling an irregular corduroy pattern); some were randomly textured (resembling a nanoscale mountain range); and some were covered with nanowires (resembling a nanoscale bed of nails).

Very few PC12 cells adhered to the smooth surface. And those that did adhere grew normally, forming long, narrow extensions. More PC12 cells adhered to the squares with parallel grooves, and these cells also grew normally.

About the same number of PC12 cells adhered to the randomly textured squares as adhered to the parallel grooves. However, these cells did not grow normally. Instead of forming narrow extensions, the cells flattened and spread across the GaN surface in all directions.

More PC12 cells adhered to the nanowire squares than to any of the other surfaces, but only 50 percent of the cells grew normally. The other 50 percent spread in all directions, like the cells on the randomly textured surfaces.

“This tells us that the actual shape of the surface characteristics influences the behavior of the cells,” Bain says. “It’s a non-chemical way of influencing the interaction between the material and the body. That’s something we can explore as we continue working to develop new biomedical technologies.”