Part of the  

Solid State Technology

  and   

The Confab

  Network

About  |  Contact

Posts Tagged ‘Cymer’

Neon Gas Supply Issues Dog the Semiconductor Industry

Thursday, August 20th, 2015

thumbnail

By Jeff Dorsch, Contributing Editor

The armed conflict in Ukraine, where most of the world’s supply of neon gas for semiconductor manufacturing and other industrial applications is produced, is leading lithography equipment vendors to offer ways to reduce use of neon, which is utilized as a buffer gas for argon fluoride and krypton fluoride gases employed in lasers for chip production.

While a shaky cease-fire has been observed in Ukraine since February, combat has restricted factory activity there in the past year.

Cymer and Gigaphoton, the two leading suppliers of laser light sources for advanced lithography, last month announced measures intended to address the limited supply of neon gas.

The situation has escalated to a neon gas supply shortage, according to Joe Ganeshan, sales manager for Gigaphoton USA. “Seventy-five percent of production comes from Ukraine,” he said. “Prices are going up drastically.”

“Chipmakers are concerned about recent escalation of neon prices and supply continuity,” David Knowles, vice president and general manager of Cymer Light Source, said in a statement. “We have worked in close cooperation with our customers on an aggressive program to develop, qualify, and introduce improvements for the installed base of ArF and KrF light sources that enable significant reductions in neon consumption while ensuring system performance.”

Risto Puhakka, president of VLSI Research, agrees that the neon gas shortage represents “a critical situation” for the semiconductor industry, which is the world’s leading consumer of neon gas. The chip business is “a materials-heavy industry,” he says. Similar crises emerged in recent years with rare earths and helium, he notes.

“It’s part of this business,” Puhakka observes. “Some materials are quite exotic.”

Commodity supply issues naturally result in higher pricing, according to Puhakka. “When the price is right, they’ll find more of it,” he adds.

Puhakka speculates that “shrewd chipmakers” were cognizant of the neon supply issue as it unfolded. “They understand the risks in the supply chain,” he says. While supply chain management is a constant concern for semiconductor manufacturers, they still have to deal with supply shortages and rising prices. “At the end of the day, they don’t have a choice,” Puhakka concludes.

Gigaphoton made a move last November, offering its eTGM technology on a free-of-charge, limited basis for new and existing GT series ArF immersion lasers. Last month, Gigaphoton stepped up its efforts with what it called the Neon Gas Rescue Program. Among other measures, the company is helping customers qualify gas suppliers on an accelerated basis and pushing up implementation of its hTGM gas recycling technology to 2016.

Cymer last month said it is helping with qualifying gas suppliers, while providing software for its installed base of light sources to reduce neon consumption. The company is aiding customers through its OnPulse support program, which brought out a helium reduction kit earlier this year.

SPIE Advanced Lithography conference concludes

Friday, February 27th, 2015

By Jeff Dorsch, contributing editor

Exposures, and reducing their cost, were a theme running through the 2015 SPIE Advanced Lithography Symposium this week in San Jose, Calif., the center of Silicon Valley.

Doubts about the continued viability of Moore’s Law abound as the 50th anniversary of Gordon Moore’s historic article for Electronics magazine draws near. Lithographers are under immense industry pressure to lower the operating costs of lithography cells in the fab while increasing wafer throughput.

“Enabling,” “productivity,” and “stability” were watchwords frequently repeated throughout the conference. The various merits (and occasional demerits) of electron-beam, extreme-ultraviolet, 193i immersion and nanoimprint lithography technologies were debated and touted over four days.

One of the technical sessions closing out Wednesday at the San Jose Convention Center was devoted to papers on “Multibeam Lithography,” especially e-beam direct-write technology, which has been seen as “pie in the sky” for many years, yet seems closer to realization than before.

Hans Loeschner of IMS Nanofabrication described how his company’s e-beam tool has progressed from alpha to beta status this year, and predicted it would be ready for production applications in 2016. Altera, CEA-Leti, and MAPPER Lithography presented a total of three papers on MAPPER’s FLX-1200 e-beam direct-write system, saying it is better able to make chips with 20-nanometer features than an immersion lithography system.

The eBeam Initiative held its annual luncheon at SPIE Advanced Lithography on Tuesday, emphasizing how multibeam mask writing, model-based mask data preparation, and complex inverse lithography technology can enable continued density scaling at the 10-nanometer process node.

“We have reached a point with traditional rules-based designs where the rules are so conservative and the implementation costs are so high that the semiconductor industry has started to lose the economic benefits of scaling to smaller design nodes for system-on-chip designs,” D2S CEO Aki Fujimura said in a statement. “A simulation-based approach combining complex ILT, MB-MDP and existing variable shaped beam mask writers in parallel with the impending emergence of multibeam mask writing are providing platforms to enable the semiconductor industry to reverse this trend and reactivate the density benefits associated with Moore’s Law.”

EUV, another technology that has had a long gestation, was the subject of a conference track over all four days, with photomask and photoresist issues being discussed in several sessions.

The news that Taiwan Semiconductor Manufacturing was able to process 1,022 wafers in 24 hours with ASML Holding’s NXE:3300B scanner was the talk of the SPIE conference on Tuesday, the first day of the two-day exhibition, which had about 60 companies occupying booths. ASML didn’t declare an end to development of its EUV systems, saying there is more work to be done. This includes development of a pellicle for the scanner’s reticles and working with resist suppliers on formulas for EUV resists.

While improvements in all types of lithographies were discussed at the conference, there was increased interest in directed self-assembly, which employs polymers to get molecules to arrange themselves in lines and spaces with a patterning guide. Advances in reducing the defectivity of DSA were reported by imec, Merck, and Tokyo Electron.

Global interest in DSA over the past four years has accelerated due to “other things getting delayed,” said Tom Ferry of Synopsys. Among other initiatives, the electronic design automation software and services company was talking about how its S-Litho molecular simulator, S-Litho shape optimizer, and Proteus ILT guide patterning tool can help enable DSA research and development, design, and manufacturing.

The Belgium-based imec was a big contributor to conference presentations, with a first author on 18 papers and posters, and a co-author of 25 publications.

While EUV garnered headlines during SPIE Advanced Lithography, the Cymer subsidiary of ASML was at the conference to talk about its third-generation XLR 700ix light source for deep-ultraviolet lithography systems. Ted Cacouris of Cymer said, “10 nanometer is basically done with DUV. It could go to 7 nanometer; immersion could be extended. It could be complementary to EUV.”

Cymer also announced its DynaPulse program, an upgrade for its OnPulse subscription service for maintenance and repair of light sources. In 2012, prior to the company’s acquisition by ASML, Cymer derived nearly 70 percent of its light-source revenue from the OnPulse service program.

It’s been an interesting week, with about 2,400 attendees from around the world gathering for the premier lithography conference of the year. They will convene again a year from now to learn what’s new in lithography.

Proponents of EUV, immersion lithography face off at SPIE

Wednesday, February 25th, 2015

By Jeff Dorsch, contributing editor

The two main camps in optical lithography are arrayed for battle at the SPIE Advanced Lithography Symposium in San Jose, Calif.

Extreme-ultraviolet lithography, on one side, is represented by ASML Holding, its Cymer subsidiary, and ASML’s EUV customers, notably Intel, Samsung Electronics, and Taiwan Semiconductor Manufacturing.

On the other side is 193i immersion lithography, represented by Nikon and its customers, which also include Intel and other leading chipmakers.

There are other lithography technologies being discussed at the conference, of course. They are bit players in the drama, so to speak, although there is a lot of discussion and buzz about directed self-assembly technology this week.

ASML broke big news on Tuesday morning, reporting that Taiwan Semiconductor Manufacturing was able to expose more than 1,000 wafers in one day this year with ASML’s NXE:3300B EUV system. “During a recent test run on an NXE:3300B EUV system we exposed 1,022 wafers in 24 hours with sustained power of over 90 watts,” Anthony Yen, TSMC’s director of research and development, said at SPIE.

While ASML was obviously and justifiably proud of this milestone, after achieving its 2014 goal of producing 500 wafers per day, it cautioned that more development remains for EUV technology.

“The test run at TSMC demonstrates the capability of the NXE:3300B scanner, and moves us closer to our stated target of sustained output of 1,000 wafers per day in 2015,” ASML’s Hans Meiling, vice president service and product marketing EUV, said in a statement. “We must continue to increase source power, improve system availability, and show this result at multiple customers over multiple days.”

The day before, Cymer announced the first shipment of its XLR 700ix light source, which is said to improver scanner throughput and process stability for manufacturing chips with 14-nanometer features. The company also debuted DynaPulse as an upgrade option for its OnPulse customers. The XLR 700ix and DynaPulse together are said to offer better on-wafer critical dimension uniformity and provide stable on-wafer performance.

Another revelation at SPIE is that SK Hynix has been working with the NXE:3300, too, and is pleased with the system’s capabilities. According to Chang-Moon Lim, who spoke Monday morning, SK Hynix was recently able to expose 1,670 wafers over three days, with uptime of 86.3 percent over that period.

“Progress has been significant on various aspects, which should not be overshadowed by the delay of [light] sources,” he said of ASML’s EUV systems.

The Korean chipmaker is exploring how it could work without pellicles on the EUV reticle, Lim noted. ASML has been developing a pellicle, made with polycrystalline silicon, in cooperation with Intel and others.

Nikon Precision and other Nikon subsidiaries didn’t issue any press releases at SPIE. The companies presented much information at Sunday’s LithoVision 2015 event, held at the City National Civic auditorium, across the street from the San Jose Convention Center, where SPIE Advanced Lithography is staged.

On offer at the Nikon conference was the claimed superiority of 193i immersion lithography equipment to EUV systems for the 14nm, 7nm and future process nodes. Donis Flagello, Nikon Research Corp. of America’s president, CEO, and chief operating officer, emphasized that message on Tuesday morning with an invited paper on “Evolving optical lithography without EUV.”

Nikon’s champion machine is the NSR-S630D immersion scanner, which was touted throughout the LithoVision event. The system is capable of exposing 250 wafers per hour, according to Nikon’s Yuichi Shibazaki.

Ryoichi Kawaguchi of Nikon told attendees, “EUV lithography needs more stability and improvement.” He also brought up the topic of manufacturing on 450-millimeter wafers, which has mostly gone ignored in the lithography competition. Nikon will ship a 450mm system this spring to the Global 450 Consortium in Albany, N.Y., Kawaguchi said. The bigger substrates could provide “an alternative option to reduce cost,” he added.

Erik Byers of Micron Technology observed, “EUV is not a panacea.”

Which lithography technology will prevail in high-volume manufacturing? The question may not be definitively answered for some time.

SPIE Photomask Technology Wrap-up

Tuesday, September 23rd, 2014

Extreme-ultraviolet lithography was a leading topic at the SPIE Photomask Technology conference and exhibition, held September 16-17-18 in Monterey, Calif., yet it wasn’t the only topic discussed and examined. Mask patterning, materials and process, metrology, and simulation, optical proximity correction (OPC), and mask data preparation were extensively covered in conference sessions and poster presentations.

Even with the wide variety of topics on offer at the Monterey Conference Center, many discussions circled back to EUV lithography. After years of its being hailed as the “magic bullet” in semiconductor manufacturing, industry executives and engineers are concerned that the technology will have a limited window of usefulness. Its continued delays have led some to write it off for the 10-nanometer and 7-nanometer process nodes.

EUV photomasks were the subject of three conference sessions and the focus of seven posters. There were four posters devoted to photomask inspection, an area of increasing concern as detecting and locating defects in a mask gets more difficult with existing technology.

The conference opened Tuesday, Sept. 16, with the keynote presentation by Martin van den Brink, the president and chief technology officer of ASML Holding. His talk, titled “Many Ways to Shrink: The Right Moves to 10 Nanometer and Beyond,” was clearly meant to provide some reassurance to the attendees that progress is being made with EUV.

He reported his company’s “30 percent improvement in overlay and focus” with its EUV systems in development. ASML has shipped six EUV systems to companies participating in the technology’s development (presumably including Intel, Samsung Electronics, and Taiwan Semiconductor Manufacturing, which have made equity investments in ASML), and it has five more being integrated at present, van den Brink said.

The light source being developed by ASML’s Cymer subsidiary has achieved an output of 77 watts, he said, and the company expects to raise that to 81 watts by the end of 2014. The key figure, however, remains 100 watts, which would enable the volume production of 1,000 wafers per day. No timeline on that goal was offered.

The ASML executive predicted that chips with 10nm features would mostly be fabricated with immersion lithography systems, with EUV handling the most critical layers. For 7nm chips, immersion lithography systems will need 34 steps to complete the patterning of the chip design, van den Brink said. At that process node, EUV will need only nine lithography steps to get the job done, he added.

Among other advances, EUV will require actinic mask inspection tools, according to van den Brink. Other speakers at the conference stressed this future requirement, while emphasizing that it is several years away in implementation.

Mask making is moving from detecting microscopic defects to an era of mesoscopic defects, according to Yalin Xiong of KLA-Tencor. Speaking during the “Mask Complexity: How to Solve the Issues?” panel discussion on Thursday, Sept. 18, Xiong said actinic mask inspection will be “available only later, and it’s going to be costly.” He predicted actinic tools will emerge by 2017 or 2018. “We think the right solution is the actinic solution,” Xiong concluded.

Peter Buck of Mentor Graphics, another panelist at the Sept. 18 session, said it was necessary to embrace mask complexity in the years to come. “Directed self-assembly has the same constraints as EUV and DUV (deep-ultraviolet),” he observed.

People in the semiconductor industry place high values on “good,” “fast,” and “cheap,” Buck noted. With the advent of EUV lithography and its accompanying challenges, one of those attributes will have to give way, he said, indicating cheapness was the likely victim.

Mask proximity correction (MPC) and Manhattanization will take on increasing importance, Buck predicted. “MPC methods can satisfy these complexities,” he said.

For all the concern about EUV and the ongoing work with that technology, the panelists looked ahead to the time when electron-beam lithography systems with multiple beams will become the litho workhorses of the future.

Mask-writing times were an issue touched upon by several panelists. Shusuke Yoshitake of NuFlare Technology reported hearing about a photomask design that took 60 hours to write. An extreme example, to be sure, but next-generation multi-beam mask writers will help on that front, he said.

Daniel Chalom of IMS Nanofabrication said that with 20nm chips, the current challenge is reduce mask-writing times to less than 15 hours.

In short, presenters at the SPIE conference were optimistic and positive about facing the many challenges in photomask design, manufacturing, inspection, metrology, and use. They are confident that the technical hurdles can be overcome in time, as they have in the past.

Blog review July 21, 2014

Monday, July 21st, 2014

Matthew Hogan, a Product Marketing Manager for Calibre Design Solutions at Mentor Graphics, blogs that SoC Reliability Verification Doesn’t Just Happen, You Know. He says the best way to verify multi-IP, multiple power domain SoCs, is with the Unified Power Format (UPF), which enables a repeatable, comprehensive, and efficient design verification methodology, using industry standards, at the transistor level.

Dick James, Senior Technology Analyst, Chipworks, has a TSMC-fabbed 20-nm part in-house, and is looking forward to the analysis results. Wondering what changes TSMC has made from the 28-nm process, Dick says he expects mostly a shrink of the latter process, with no change to the materials of the high-k stack, though maybe to the sequence.

Ed Korczynski continues his theme of “Moore’s Law is Dead” with a third installment that looks at when that might happen. He says that at ~4nm pitch we run out of room “at the bottom,” after patterning costs explode at 45nm pitch.

Vivek Bakshi, EUV Litho, Inc. blogs about The 2014 EUVL Workshop which was held late last month amid some positive highlights and lots of R&D updates. The keynote talks this year were from Intel, Gigaphoton and Toshiba.

In his 201st Insights from The Leading Edge (IFTLE) blog post, Phil Garrou takes a look at some of the presentations at this year’s ConFab. Subramani Kengeri, Vice President, Advanced Technology Architecture for GlobalFoundries discussed the techno-economics of the semiconductor industry. Gary Patton, VP of IBM Semiconductor Research & Development Center addressed “Semiconductor Technology: Trends, Challenges, & Opportunities.” Adrian Maynes, 450C program manager, discussed the “450mm Transition Toward Sustainability: Facility & Infrastructure Requirements.”

Zvi Or-Bach, President and CEO of MonolithIC 3D Inc., blogs that over the course of three major industry conferences (VLSI 2013, IEDM 2013 and DAC 2014), executives of Qualcomm voiced a call for monolithic 3D “to extend the semiconductor roadmap way beyond the 2D scaling” as part of their keynote presentations.