Part of the  

Solid State Technology

  and   

The Confab

  Network

About  |  Contact

Posts Tagged ‘Corning’

Low-Cost Manufacturing of Flexible Functionalities

Wednesday, July 15th, 2015

thumbnail

By Ed Korczynski, Sr. Technical Editor

SEMICON West includes many business and technology workshops and forums for attendees.  On Wednesday morning July 15, attendees packed the TechXPOT in the South Hall of Moscone Center to hear updates on the status of flexible hybrid electronics manufacturing.

M-H. Huang of Corning showed the surprising properties of “Corning Willow Glass: Substrates for flexible electronic devices.” Willow Glass is created in a fusion-forming process similar to that used to create Gorilla Glass, though with thickness <=200 microns to allow for flexibility. “A key advantage is hermeticity compared to plastic substrates,” reminded Huang. Thin bare glass without any edge or surface coatings can be repeatably bent and twisted without cracking. The minimum bending radius for roll-to-roll (R2R) processing is limited by coating layer delamination:  12.5mm for bare glass, 25mm for AZO-coated glass, and 50mm radius for CZTS cells on glass all passing 500 bending cycles at 60 cycles per minute. Working with the State University of New York at Binghamton Center for Advanced Microelectronic Manufacturing (CAMM), Corning has demonstrated R2R sputtering of Al, Cr/Cu, ITO, SiO2, and IGZO films. Collaborating with ITRI in Taiwan using tools designed specifically for processing flexible glass, Corning demonstrated R2R gravure-offset printing of metal mesh structures silver ink that can be used for 7” touch-panels. Working with both CAMM and ITRI has led to R&D fabrication of a touch sensor with 90% device yield.

Thomas Lantzer, of DuPont Electronic Materials, discussed the “Materials Supplier Perspective on Flexible Hybrid Electronics.” Since the overarching goal of flexible electronics is not just mass and volume reduction but a huge reduction in manufacturing cost, it is axiomatic that fabrication must evolving toward the use of traditional printing methods and flexible substrates.

“There are many printing techniques,” explained Lantzer, “So there are building blocks out there today that we feel will lead to an explosion of fabrication capabilities in the future.” DuPont has been actively involve in flexible materials and electronics for decades, supplying screen printed conductive pastes, resistor pastes for automotive defoggers, flexible films, and flexible materials for copper circuitry.

Mark Poliks, Professor at the State University of New York at Binghamton and Director of the Center for Advanced Microelectronic Manufacturing (CAMM), provided a comprehensive overview of “Materials, Processes & Tools for Fabrication of Flexible Hybrid Electronics.” Working with partners in the Nano-Bio Manufacturing Consortium since 2013, CAMM researchers are developing a wearable disposable sensor system with a target price of $2 to measure human performance parameters. The device including sensors, processor, battery, and wireless communications blocks will be built with copper (Cu) connections on flexible substrates such as polyimide. Initial functionalities will include biometric parameters such as electro-cardio-gram (ECG) signals and skin temperature. First prototypes of ECG sensors on 12.5 micron thin polyimide have been completed, which demonstrate output wave forms with equal or better signal extraction compared to industry standard silver/silver-chloride (Ag/AgCl) electrodes. This new printed sensor and breadboard electronics can be flexed over 200 times and retain the same signal quality and heart-beat extraction. The flexible substrate can accommodate assembly processes for flip-chip (FC) ASIC dice having micro-bumps on a 70 micron pitch, using die-placement accuracy of 9 microns (3 sigma). For flexible hybrid applications, dual-sided placement of components along with printed circuitry reduces the real estate of the final packaged device.

Blog review April 22, 2014

Tuesday, April 22nd, 2014

Pete Singer blogs that it’s difficult to make interconnects much smaller without introducing significant increases in resistivity. At the upcoming IITC/AMC joint conference in May, many papers focus on new materials that could lead to reduced resistivity and enable further interconnect scaling. Most notably, graphene and CNTs provide an interesting alternative to copper.

Phil Garrou continues his analysis of the IMAPS Device Packaging Conference with a look at the presentations made by Flip Chip International and SUSS (the use of lasers in the manufacturing of WLP); GLOBALFOUNDRIES, Amkor and Open Silicon (a 2.5D ARM dual core product demonstrator which consists of 2 ARM die on a high density silicon interposer); Corning (results of multiple glass interposer programs) and Namics (underfill products for FC BGA and FC CSP).

Blog review February 24, 2014

Monday, February 24th, 2014

Paul Farrar, general manager of the G450C consortium, said early work has demonstrated good results and that he sees no real barriers to implementing 450mm wafers from a technical standpoint. But as Pete Singer blogs, he also said: “In the end, if this isn’t cheaper, no one is going to do it,” he said.

Adele Hars of Advanced Substrate News reports that body-biasing design techniques, uniquely available in FD-SOI, have allowed STMicroelectronics and CEA-Leti to demonstrate a DSP that runs 10x faster than anything the industry’s seen before at ultra-low voltages.

Dr. Bruce McGaughy, Chief Technology Officer and Senior Vice President of Engineering, ProPlus Design Solutions, Inc., says the move to state-of-the-art 28nm/20nm planar CMOS and 16nm FinFET technologies present greater challenges to yield than any previous generation. This is putting more emphasis on high sigma yield.

Jamie Girard, senior director, North America Public Policy, SEMI President Obama touched on many different policy areas during his State of the Union talk, and specifically mentioned a number of issues that are of top concern in the industry and with SEMI member companies. Among these are funding for federal R&D, including public-private partnerships, trade, high-skilled immigration reform, and solar energy.

Phil Garrou finishes his look at the IEEE 3DIC meeting, with an analysis of presentations from Tohoku University, Fujitsu’s wafer-on-wafer (WOW), ASE/Chiao Tung University and RTI. In another blog, Phil continues his review of the Georgia Tech Interposer conference, highlighting presentations from Corning, Schott Glass, Asahi Glass, Shinko, Altera, Zeon and Ushio.

Pete Singer recommends taking the new survey by the National Center for Manufacturing Sciences (NCMS) but you may first want to give some thought as to what is and what isn’t “nanotechnology.”