Part of the  

Solid State Technology

  and   

The Confab

  Network

About  |  Contact

Posts Tagged ‘Broadcomm’

Silicon Summit speakers look at the future of chip technology

Friday, April 17th, 2015
thumbnail

Gregg Bartlett

By Jeff Dorsch, Contributing Editor

Quick quiz: What topics do you think were discussed at length Wednesday at the Global Semiconductor Alliance’s Silicon Summit?

A. The Internet of Things.

B. Augmented reality and virtual reality.

C. Cute accessories for spring and summer looks.

The answers: A and B. C could be right if you count wearable electronics as “cute accessories.”

Wednesday’s forum at the Computer History Museum in Mountain View, Calif., not far from  Google’s headquarters, was dominated by talk of IoT, AR, VR, and (to a lesser extent) wearable devices.

Gregg Bartlett, senior vice president of the Product Management Group at GlobalFoundries, kicked off the morning sessions with a talk titled “IoT: A Silicon Perspective.” He said, “A lot of the work left in IoT is in the edge world.”

Bartlett noted, “A lot of the infrastructure is in place,” yet the lack of IoT standards is inhibiting development, he asserted.

“IoT demands the continuation of Moore’s Law,” Bartlett said, touting fully-depleted silicon-on-insulator technology as a cost-effective alternative to FinFET technology. FD-SOI “is the killer technology for IoT,” he added.

Next up was James Stansberry, senior vice president and general manager of IoT Products at Silicon Laboratories. Energy efficiency is crucial for IoT-related devices, which must be able to operate for 10 years with little or no external power, he said.

Bluetooth Smart, Thread, Wi-Fi, and ZigBee provide the connectivity in IoT networks, with a future role for Long-Term Evolution, according to Stansberry. He also played up the importance of integration in connected devices. “Nonvolatile memory has to go on the chip” for an IoT system-on-a-chip device, he said.

For 2015, Stansberry predicted a dramatic reduction in energy consumption for IoT devices; low-power connectivity standards will gain traction; and the emergence of more IoT SoCs.

Rahul Patel, Broadcom’s senior vice president and general manager of wireless connectivity, addressed health-care applications for the IoT. “Security is key,” he said. Reliability, interoperability, and compliance with government regulations are also required, Patel noted.

“My agenda is to scare everyone to death,” said Martin Scott, senior vice president and general manager of the Cryptography Research Division at Rambus. Cybersecurity with the IoT is causing much anxiety, he noted. “Silicon can come to the rescue again,” he said. “If your system relies on software, it’s hackable.”

To build trust in IoT devices and networks, the industry needs to turn to silicon-based security, according to Scott. “Silicon is the foundation of trusted services,” he concluded.

The second morning session was titled “The Future of Reality,” with presentations by Keith Witek, corporate vice president, Office of Corporate Strategy, Advanced Micro Devices; Mats Johansson, CEO of EON Reality; and Joerg Tewes, CEO of Avegant.

Augmented reality and virtual reality technology is “incredibly exciting,” Witek said. “I love this business.” He outlined four technical challenges for VR in the near future: Improving performance; ensuring low latency of images; high-quality consistency of media; and system-level advances. “Wireless has to improve,” Witek said.

VR is “starting to become a volume market,” Johansson said. What matters now is proceeding “from phone to dome,” where immersive experiences meet knowledge transfer, he added. Superdata, a market research firm, estimates there will be 11 million VR users by next year, according to Johansson.

Avegant had a successful Kickstarter campaign last year to fund its Glyph VR headset, with product delivery expected in late 2015, Tewes said. The Glyph has been in development for three years, he said, employing digital micromirror device technology, low-power light-emitting diodes, and latency of less than 12 microseconds to reduce or eliminate the nausea that some VR users have experienced, he said.

The afternoon session was devoted to “MEMS and Sensors, Shaping the Future of the IoT.” Attendees heard from Todd Miller, Microsystems Lab Manager at GE Global Research; Behrooz Abdi, president and CEO of InvenSense; Steve Pancoast, Atmel’s vice president of software and applications; and David Allan, president and chief operating officer of Virtuix.

Miller outlined the challenges for the industrial Internet – cybersecurity, interoperability, performance, and scale. “Open standards need to continue,” he said.

General Electric and other companies, including Intel, are involved in the Industrial Internet Consortium, which is developing use cases and test beds in the area, according to Miller.

He noted that GE plans to begin shipping its microelectromechanical system devices to external customers in the fourth quarter of this year.

Abdi said, “What is the thing in the Internet of Things? The IoT is really about ambient computing.” IoT sensors must continuously answer these questions: Where are you, what are you doing, and how does it feel, he said.

The IoT will depend upon “always on” sensors, making it more accurate to call the technology “the Internet of Sensors,” Abdi asserted. He cautioned against semiconductor suppliers getting too giddy about business prospects for the IoT.

“You’re not going to sell one billion sensors for a buck [each],” Abdi said.

Pancoast of Atmel said sensors would help provide “contextual computing” in IoT networks. “Edge/sensing nodes are a major part of IoT,” he noted. Low-power microcontrollers and microprocessors are also part of the equation, along with “an ocean of software” and all IoT applications, Pancoast added. He finished with saying, “All software is vulnerable.”

Allan spoke about what he called “the second machine age,” with the first machine age dating to 1945, marking the advent of the stored-program computer and other advances. “The smartphone is the first machine of the second machine age,” he said.

IoT involves wireless sensor networks and distributed computing, he said. Google has pointed the way over the past decade, showing how less-powerful computers, implemented in large volumes, have become the critical development in computing, Allan noted. Because of this ubiquity of distributed computing capabilities, “Moore’s Law doesn’t matter as much,” he said.

With the IoT, “new machines will augment human desires,” Allan predicted, facilitating such concepts as immortality, omniscience, telepathy, and teleportation. He explained how technology has helped along the first three – we know what people are thinking through Facebook and Twitter – and the last is just a matter of time, according to Allan.