Part of the  

Solid State Technology

  and   

The Confab

  Network

About  |  Contact

Posts Tagged ‘Brewer Science’

The Future Is Flexible and Printed

Friday, March 4th, 2016

thumbnail

By Jeff Dorsch, Contributing Editor

Automotive electronics, the Internet of Things, wearable gadgets, and other emerging chip markets are also expected to provide growth for flexible electronics, which often share manufacturing processes and materials with semiconductors.

Such applications were the talk of this week’s 2016FLEX Conference & Exhibition in Monterey, Calif. Printed and hybrid electronics were also on offer in the technical presentations and the compact exhibition area on the mezzanine level of the Monterey Marriott, where the conference was held while the Monterey Conference Center across Del Monte Avenue undergoes a year-long reconstruction project.

The Monterey Marriott and the Monterey Conference Center. (Credit: Jeff Dorsch)

Autonomous vehicles, connected cars, and the IoT are driving demand and innovation in flexible, hybrid, and printed electronics, according to Harry Zervos, principal analyst and business development manager for North America at IDTechEx, the market research, business intelligence, consulting, and events firm.

These new forms provide the capability to “add electronics to more and more mundane things,” he noted.

IDTechEx estimates the printed, flexible, and organic electronics market was worth a total of $24.5 billion in 2015. Organic light-emitting diode displays accounted for the lion’s share, at $15.3 billion. While OLEDs typically are not printed electronics, they stand to lead to flexible displays in the future, according to IDTechEx.

Sensors, mostly glucose test strips, represented $6.6 billion in revenue last year, while conductive inks provided $2.3 billion during 2015.

The market research firm forecasts printed electronics will increase from $8.8 billion in 2015 to $14.9 billion in 2025. Products made on flexible substrates are projected to grow from $6.4 billion last year to $23.5 billion in the next decade.

Market researchers have predicted “billions of sensors” will be sold in the next few years, including sensors for smartphones, Zervos said.  Smartphones will be “becoming flexible, more robust, foldable,” he added.

He is looking ahead to a time of flexible sensors and perhaps flexible microelectromechanical system devices to enable those flexible phones.

Flexible, hybrid, and printed electronics will provide “innovation in form factors, allowing designers to come up with new ideas on what devices could look like,” Zervos said in an interview. Such innovation will lead to “more excitement, higher profit margins,” he added.

This will depend on “an interoperable ecosystem” between the mature semiconductor industry and the nascent flexible electronics industry, Zervos said.

Molex was among the exhibitors at this week’s conference. The company was acquired in late 2013 for $7.2 billion by Koch Industries. Nearly a year ago, Molex acquired certain assets of Silogie, a supplier of flexible and printed electronics for consumer goods, industrial, lighting, medical, and military applications.

During the technical program on Wednesday afternoon, John Heitzinger — Molex’s general manager of printed electronics — described products the company has developed for the structural health monitoring of advanced ammunition, building monitoring systems, and physiological monitoring, the last on behalf of the U.S. Air Force. In working on functionalized carbon nanotubes for detecting and sensing lactate, Molex collaborated with American Semiconductor, Brewer Science, and Northeastern University, he said.

Neil Morrison of Applied Materials WEB Coating presented Wednesday morning on “’Packaging’ of Moisture Sensitive Materials Used in New Form Factor Display Products.” He is manager of research and development in Energy & Environmental Solutions for the Applied Materials unit, based in Alzenau, Germany.

Applied has a 40-year history is supplying chemical vapor deposition equipment for semiconductor manufacturing, he noted, and now offers plasma-enhanced CVD for displays and roll-to-roll CVD for advanced flexible electronics.

For quantum dots and wearables, “you need a barrier solution,” especially multilayer barrier stacks, Morrison said.

He recommended PECVD for manufacturing with silicon nitride, and critical roll-to-roll CVD requirements for high-performance barrier films.

For high-volume manufacturing of roll-to-roll barriers, “process monitoring and control is key,” Morrison said.

Flexible, hybrid, and printed electronics are clearly becoming a big and growing market. How companies take advantage of this market opportunity may be critical to their future.