Part of the  

Solid State Technology

  and   

The Confab

  Network

About  |  Contact

Posts Tagged ‘batteries’

Blog review March 9, 2015

Monday, March 9th, 2015

Pete Singer is delighted to announce the keynotes and other speakers for The ConFab 2015, to be held May 19-22 at The Encore at The Wynn in Las Vegas. The line-up includes Ali Sebt, President and CEO of Renesas America, Paolo Gargini, Chairman of the ITRS and Subramani Kengeri, Vice President, Global Design Solutions at GLOBALFOUNDRIES.

Mark Simmons, Product Marketing Manager, Calibre Manufacturing Group, Mentor Graphics writes about cutting fab costs and turn-around time with smart, automated resource management. He notes that the competition for market share is brutal for both the pure-play and independent device manufacturer (IDM) foundries. Success involves tuning a lot of knobs and dials. One of the important knobs is the ability to continually meet or exceed aggressive time-to-market schedules.

Paul Stockman, Commercialization Manager, Linde Electronics blogs that there is an increasing demand for and focus on sustainable manufacturing that will contribute to a greening of semiconductors. This greening must be robust and responsive to change and cannot constrain the individual processes or operation of a fab.

Applied Materials’ Max McDaniel writes on the quest for more durable displays. He says the same innovators who created such amazingly thin, light and highly functional smartphones (with the help of Applied Materials display technology) are already developing durability improvements that may eliminate the need for protective covers.

Batteries? We don’t need no stinking batteries, says Ed Korczynski. We’re still used to thinking that low-power chips for “mobile” or “Internet-of-Things (IoT)” applications will be battery powered…but the near ubiquity of lithium-ion cells powering batteries could be threatened by capacitors and energy-harvesting circuits connected to photovoltaic/thermoelectric/piezoelectric micro-power sources.

With the 2015 SPIE Advanced Lithography (AL) conference around the corner, some people have asked me what remaining EUVL challenges need to be addressed to ensure it will be ready for mass production later this year or next.  Vivek Bakshi of EUV Litho, Inc. provides thoughts on this topic and what he expects to hear at the conference.

Phil Garrou continues his look at presentations from the Grenoble SEMI 3D Summit which took place in January, focusing on an interesting presentation by ATREG consultants on the future of Assembly & Test.

On Tuesday, January 20, President Obama once again stood before a joint session of Congress to deliver a State of the Union Address.  With the newly seated Republican-controlled Congress and his Cabinet present, the President discussed topics ranging from the current state of the economy to foreign affairs and his ideas on how to move the nation forward.  Jamie Girard of SEMI was pleased to hear that the President supported multiple policy goals including expansion of free trade, corporate tax reform, support for basic science research and development and others.

Research Alert: Jan. 14, 2014

Tuesday, January 14th, 2014

Battery development may extend range of electric cars

It’s known that electric vehicles could travel longer distances before needing to charge and more renewable energy could be saved for a rainy day if lithium-sulfur batteries can just overcome a few technical hurdles. Now, a novel design for a critical part of the battery has been shown to significantly extend the technology’s lifespan, bringing it closer to commercial use.

A “hybrid” anode developed at the Department of Energy’s Pacific Northwest National Laboratory could quadruple the life of lithium-sulfur batteries. Nature Communications published a paper today describing the anode’s design and performance.

“Lithium-sulfur batteries could one day help us take electric cars on longer drives and store renewable wind energy more cheaply, but some technical challenges have to be overcome first,” said PNNL Laboratory Fellow Jun Liu, who is the paper’s corresponding author. “PNNL’s new anode design is helping bringing us closer to that day.”

The cyborgs era has started

They are known from science fiction novels and films – technically modified organisms with extraordinary skills, so-called cyborgs. This name originates from the English term “cybernetic organism.” In fact, cyborgs that combine technical systems with living organisms are already reality. The KIT researchers Professor Christof M. Niemeyer and Dr. Stefan Giselbrecht of the Institute for Biological Interfaces 1 (IBG 1) and Dr. Bastian E. Rapp, Institute of Microstructure Technology (IMT), point out that this especially applies to medical implants.

In recent years, medical implants based on smart materials that automatically react to changing conditions, computer-supported design and fabrication based on magnetic resonance tomography datasets or surface modifications for improved tissue integration allowed major progress to be achieved. For successful tissue integration and the prevention of inflammation reactions, special surface coatings were developed also by the KIT under e.g. the multidisciplinary Helmholtz program “BioInterfaces.”

Progress in microelectronics and semiconductor technology has been the basis of electronic implants controlling, restoring or improving the functions of the human body, such as cardiac pacemakers, retina implants, hearing implants, or implants for deep brain stimulation in pain or Parkinson therapies. Currently, bioelectronic developments are being combined with robotics systems to design highly complex neuroprostheses. Scientists are working on brain-machine interfaces (BMI) for the direct physical contacting of the brain. BMI are used among others to control prostheses and complex movements, such as gripping. Moreover, they are important tools in neurosciences, as they provide insight into the functioning of the brain. Apart from electric signals, substances released by implanted micro- and nanofluidic systems in a spatially or temporarily controlled manner can be used for communication between technical devices and organisms.

Nano-capsules show potential for more potent chemo-prevention

Researchers at the Winship Cancer Institute of Emory University have discovered a more effective drug delivery system using nanotechnology that could one day significantly affect cancer prevention.

The study, published today in Cancer Prevention Research, a journal of the American Association for Cancer Research, involved the use of microscopic amounts of the naturally occurring antioxidant, luteolin, that were encapsulated in a water-soluble polymer. When injected into mice the nano-luteolin inhibited growth of lung cancer and head and neck cancer cells.

“Our results suggest that nanoparticle delivery of naturally occurring dietary agents like luteolin has many advantages,” says senior study author Dong Moon Shin, MD, professor of hematology and medical oncology at Emory University School of Medicine and associate director of academic development at Winship Cancer Institute. “By using a high concentration of luteolin in the blood, we were better able to inhibit the growth of cancer cells.”

Luteolin is known for its anti-inflammatory and anti-cancer effects. It is naturally found in green vegetables such as broccoli, celery and artichokes, however, Shin says large quantities would need to be consumed to be effective. By concentrating the compound into a nanoparticle and making it easy to dissolve in water, researchers conclude nano-luteolin has immense potential for future human studies of chemoprevention

Chemoprevention is currently used to help stop the recurrence of cancer in patients and reduce the risk of cancer in others.


Extension Media websites place cookies on your device to give you the best user experience. By using our websites, you agree to placement of these cookies and to our Privacy Policy. Please click here to accept.