Part of the  

Solid State Technology

  and   

The Confab

  Network

About  |  Contact

Posts Tagged ‘ARM Holdings’

Rhines Expounds on the Deconsolidation of the Semiconductor Industry

Wednesday, April 27th, 2016

thumbnail

By Jeff Dorsch, Contributing Editor

“By 2020, we are all going to work for the same company,” Wally Rhines, chairman and chief executive officer of Mentor Graphics, said Tuesday morning (April 26) in his keynote presentation at Mentor’s U2U user conference in Santa Clara, Calif.

Taking “Merger Mania” as his theme, the veteran electronic design automation and semiconductor executive reviewed the merger-and-acquisition activity of 2015, some of which is extending into this year. Rhines noted that several of the big acquiring companies in last year’s wave of industry consolidation had names beginning with the letter “M,” while some of the acquired chip enterprises had names beginning with the letter “A.” That, he joked, was the genesis of “M&A” in 2015.

On a more serious note, the Mentor CEO challenged the conventional wisdom that the industry experienced unprecedented deal-making and combination in 2015. The number of deals involved, 30, wasn’t a record, he said. It was the “magnitude” of valuations in those transactions, with a number of multibillion-dollar acquisitions, he added.

The top 10 semiconductor suppliers in the world have changed dramatically since the 1950s, as the industry has transitioned from germanium transistors to silicon-based integrated circuits made with a bipolar process, metal-oxide-semiconductor memory chips, memories/microprocessors, and system-on-a-chip devices, according to Rhines.

The industry market share of the top 50 chip companies has actually declined for many years, through 2014, he noted. “We’re still on a deconsolidation path,” Rhines asserted. “The dynamics of the industry change.”

While the industry was selling 50 percent of its chips for computing applications a decade ago, and 25 percent for communications, the trend has lately shifted, with communications overtaking computers as the leading application, although the line between communications and computing is getting blurrier, Rhines noted.

“Why the acceleration in mergers?” Rhines wondered. The chief factors generally credited are economies of scale, financial leverage, and regulatory/government mandates, he listed.

Despite all the combinations over the years, there is scant evidence that mergers always mean higher profit margins, compared with revenue figures, Rhines said. “There is no correlation between size and profits,” he noted. “It’s not an automatic formula for success. Maybe scale isn’t the answer.”

A more compelling reason for the wave of mergers is “very cheap money,” with historically low rates on corporate loans, Rhines noted. Tax advantages, especially on tax-inversion deals, seem to be fading as an incentive to merge, as the federal government is making it more difficult for large corporations to move their headquarters out of the United States and minimize their tax obligations to the U.S., according to Rhines.

That brings in the consideration of regulations and government mandates. China is engaged in a five-year program to create “greater self-sufficiency” for its domestic semiconductor industry, the Mentor CEO said. Instead of directly subsidizing the growth of semiconductor manufacturers and chip-related suppliers, China’s central government is taking equity stakes in private-equity firms that are making investments in the semiconductor industry, sometimes seeking to acquire companies in the U.S. and around the world, or to take an ownership stake in key companies.

Research and development spending by semiconductor companies goes up and down depending on industry revenue, yet it generally remains flat as a percentage of revenue – typically around 14 percent of revenue, according to Rhines.

Still, “long-term interest rates can’t stay low forever,” he concluded. “Merger mania will be limited.”

In an interview following his keynote, Rhines expounded on the theme of the learning curve – a concept that encompasses Moore’s Law and other observations of technological change. In addition to talking about the learning curve in his keynote, Rhines also wrote about in a recent blog post.

Moore’s Law presents a “limited set of knobs to turn,” he observed. For years, “the most productive thing to do is shrink” the dimensions of ICs, he said. While the demise of Moore’s Law has long been predicted, “the cost per switch/transistor will always be going down,” he added. “You will always see an improvement.”

The Internet of Things is widely touted as the next market to boost the fortunes of the semiconductor industry. IoT could force the industry to “improve enough to enable another application, like wireless,” Rhines said.

In general, the industry is facing substantial manufacturing challenges in getting down to the 16/14-nanometer process node and smaller dimensions. “Every generation has a new physics problem to solve,” Rhines observed. “Complexity grows.”

Chip designers and manufacturers are now dealing with electromigration issues and thermal problems, he noted. EDA is taking on these challenges while also pivoting to the wider considerations of system design, rather than chip or board design, Rhines said.

“Forty percent of our revenue comes from system design,” the Mentor CEO said. Designing systems for automotive vehicles, military/aerospace systems, medical equipment, and other areas represents a $2.5 trillion market in total, compared with about $350 billion for semiconductors, on an annual basis.

Faced with declining revenue and profitability in the 2016 fiscal year, Mentor Graphics offered a voluntary early retirement program for veteran employees, and dozens of them took the buyout benefits, Rhines noted. This represented “a forcible evolution of the company,” he said. “We were going to lose a significant amount of corporate learning.”

While somewhere between 110 and about 200 employees took early retirement, Mentor actually increased its headcount last year, from 5,558 full-time positions as of January 31, 2015, to around 5,700 positions on January 31, 2016.

What about retirement for Rhines, who will celebrate his 70th birthday in November of this year? “I haven’t actually thought about it,” he said in the interview. While carefully noting, “I serve at the will of the board,” Rhines added, “I’m not looking for another job.” He still has the “energy level” for all those red-eye flights to meet with customers, he said. “I don’t play golf,” Rhines commented. “I like a lot of pressure, crises. I love the relationships I have with customers, employees.”

The Rhines keynote was followed Tuesday morning by a keynote from Zach Shelby, vice president of marketing for the Internet of Things at ARM Holdings, who spoke on “Driving Beyond IoT.”

Shelby noted the history of computing, communications, and networking in recent decades. “It takes an ecosystem,” he asserted. ARM, he said, is not just a fabless semiconductor company; “we’re silicon-less,” he said, since ARM is involved in developing and licensing technology for other companies to use. The IC design company works with operators of cloud services, network operators, system integrators and end-users around the world, according to Shelby.

The industry trend is going “from embedded to connected, reaching millions of developers,” he said.

While some see automotive vehicles as “expensive mobile phones,” Shelby said, “They’re becoming autonomous drones.” He added, “The auto is the ultimate intelligent connected device.”

Rhines and Shelby later participated in an afternoon panel session titled “Ripple or Tidal Wave: What’s Driving the Next Wave of Innovation and Semiconductor Revenue?” Also on the panel were James Hogan of Vista Ventures, Brad Howe of Altera, and Kelvin Low of Samsung Semiconductor.

Goodbye, EDAC; Hello, ESD Alliance

Friday, April 1st, 2016

thumbnail

By Jeff Dorsch, Contributing Editor

The Electronic Design Automation Consortium (EDAC) is no more. The industry organization, founded in 1989, is changing its name to the Electronic System Design Alliance, or ESD Alliance.

The name change is being accompanied by an expansion of the organization’s charter. Having taken on semiconductor intellectual property several years ago, the ESD Alliance will also address advanced packaging and embedded software, according to Robert Smith, who took over last year as executive director of EDAC. The ESD Alliance will also welcome service companies that offer design know-how and resources.

The alliance’s launch was marked by an evening event on Wednesday (March 30) at the SEMI headquarters in San Jose, Calif., where the ESD Alliance has its offices. In attendance at the social gathering were several EDAC directors, including Simon Segars, chief executive officer of ARM Holdings; Wally Rhines, chairman and CEO of Mentor Graphics; Lip-Bu Tan, president and CEO of Cadence Design Systems; and Aart de Geus, chairman and co-CEO of Synopsys.

“We’re part of this large ecosystem,” Bob Smith said Wednesday evening, adding, “Semiconductors – they need design.” He recognized by name many of the people involved in EDAC and now the ESD Alliance.

A slide presentation at the event began with “Kingdom of Rain,” by The The, segueing to “Love Shack” by the B-52’s – two songs dating to 1989, the year EDAC was formed. That also was the year Taylor Swift was born, one slide noted.

In 2016, marked musically by Mark Ronson’s “Uptown Funk” in the slide show, the ESD Alliance is taking the place of the EDA Consortium.

TSMC Readies 7nm Chip Ecosystem, Infrastructure for 2017

Wednesday, March 16th, 2016

thumbnail

By Jeff Dorsch, Contributing Editor

Taiwan Semiconductor Manufacturing Company came to Silicon Valley on Tuesday for a day of presentations on its latest chip technology. The TSMC Technology Symposium for North America drew more than 1,000 attendees at the San Jose Convention Center.

The world’s largest silicon foundry led off the day with a pair of announcements: ARM Holdings and TSMC said they would collaborate on 7-nanometer FinFET process technology for ultra-low-power high-performance computing (HPC) system-on-a-chip devices, building on their previous experience with 16nm and 10nm FinFET process technology, while MediaTek and TSMC extended their partnership to develop Internet of Things and wearable electronics products, using the IC design house’s MT2523 chipset for fitness smartwatches, introduced in January and fabricated with TSMC’s 55nm ULP process.

TSMC’s work with ARM on the 16nm and 10nm nodes employed ARM’s Artisan foundation physical intellectual property, as will their 7nm efforts.

On Tuesday afternoon, the hundreds of attendees heard first from BJ Woo, TSMC’s vice president of business development, on the company’s advanced technology, including its moves toward supporting radio-frequency IC (RFIC) designs for smartphone chips and other areas of wireless communications.

“Cellular RF and WLAN are RF technology drivers,” she said. Looking toward 4G LTE Carrier Aggregation, TSMC began offering its 28HPC RF process to customers in late 2015 and will roll out the 28HPC+ RF process in the second quarter of this year, Woo added.

TSMC has won 75 percent of the business for RFIC applications, she asserted.

The foundry will start making 10nm FinFET chips for flagship smartphones and “phablets” this year, with 7nm FinFET devices for those products in 2017, according to Woo.

The business development executive also touted the company’s “mature 28-nanometer processes,” the 28HPC and 28HPC+, saying they are “rising in both volume and customer tape-outs.”

TSMC has been shipping automotive chips meeting industry standards since 2014, Woo noted, primarily for advanced driver assistance systems (ADAS) and infotainment electronics. The foundry is now working on vehicle control technology, employing microcontrollers.

The company’s 16FF+ process has been used in 50 customer tape-outs, Woo said. “Many have achieved first-silicon success,” she added. TSMC is putting its 16FFC process into volume production during this quarter.

“Automotive will be the [semiconductor] industry focus,” Woo predicted.

She also spoke about the company’s MD2 local interconnect technology, its 1D back-end-of-line process, and its spacer BEOL process.

Regarding 7nm chips, Woo said the company will offer two “tracks” of such chips, for high-performance computing and mobile applications. “Both will be available at the same time,” she said.

Most of the semiconductor production equipment being used for fabrication of 10nm chip will also be used for 7nm manufacturing, according to Woo. Those 7nm chips will be 10 to 15 percent faster than 10nm chips, while reducing power consumption by 35 to 40 percent, she said.

Risk production of 7nm chips will begin one year from now, in March of 2017, she said.

Suk Lee, senior director of TSMC’s Design Infrastructure Marketing Division, reported on development of electronic design automation (EDA) products for the 16nm node and beyond.

“Low-power solutions are ready,” he said of the foundry’s 16FFC process. IP is available to use with 16FFC for automotive, IoT, HPC, and mobile computing applications, he noted.

Lee reviewed what the company’s EDA partners – Mentor Graphics, Synopsys, Cadence Design Systems, ANSYS, and ATopTech – have available for 10nm chip design and verification.

Design and manufacturing of 7nm chips will involve cut-metal handling and multiple patterning, according to Lee. “We’ve used this technology on 16 nanometer and previous generations,” he said of cut-metal handling.

TSMC will support multiple SPICE simulators, having developed hybrid-format netlist support, Lee said. Pre-silicon design kits for 7nm chips will be available in the third quarter of 2016, he added.

The TSMC9000 Program for automotive/IoT products will be “up and running” in Q3 of this year, providing “automotive-grade qualification requirements in planning,” he said.

Lee also spoke about the foundry’s offerings in 3D chips, featuring “full integration of packaging and IC design” with TSMC’s InFO technology. The HBM2 CoWoS design kit will be out in the second quarter of 2016, he said. “We’re very excited about that,” Lee added.

George Liu, senior director of TSMC’s Sensor & Display Business Development, said, “The Internet of Things will drive the next semiconductor growth.” When it comes to the IoT and the Internet of Everything, “forecasts are all over the map,” he noted.

Taking diversification as his theme, Liu said TSMC’s specialty technology will help bridge the connection between the natural world and the computing cloud. First there is the “signal chain” of analog chips and sensors, leading to the “data chain” of connectivity, he said.

Liu reviewed a wide variety of relevant technologies, such as CMOS image sensors, microelectromechanical system (MEMS devices, embedded flash memories, biometrics, touch and display technology, and power management ICs.

At the all-day conference, which included an ecosystem exhibition by partner companies, TSMC emphasized its readiness to take on 28nm, 16nm, 10nm, and 7nm chip designs, along with the more mature process technologies. It’s game on for the foundry business.

IoT Will Enable ‘Living Services,’ Keynote Speaker Says

Monday, December 7th, 2015

thumbnail

By Jeff Dorsch, Contributing Editor

“It’s not about the sensors,” Nandini (Nan) Nayak, managing director of design strategy at Fjord, said Thursday morning (December 3) in a keynote address at the Designers of Things conference in San Jose, Calif.

Rather than talk about the Internet of Things, the subject of this two-day conference, Nayak addressed what she termed “Living Services” – the product of all those IoT sensors and processors, data centers, and cloud-based services.

Living services are “responsive to individual needs, contextually aware, and react in real-time,” she said. They “learn and evolve…as if they are alive.”

The “digitization of everything” creates “liquid expectations” among consumers and other users, Nayak asserted. “People’s expectations transcend expected boundaries,” she added.

The IoT involves “a shift of focus from designing for users and things to designing for people’s activities,” Nayak elaborated. “Everything is beginning to connect with each other.”

She added, “Sensors are cheap; they are able to be placed in many places.”

User interfaces are changing, Nayak noted, moving from computer screen-based interfaces to haptics and “touch-based interaction.”

She laid out the key characteristics of living services – the automation of low-maintenance decisions and actions, long-term learning from what people do, powered by data and analytics, collected from sensor-rich objects and interactions of daily life. “Think about environments, not industries,” Nayak advised.

“The IoT or living services will affect all aspects of our lives,” she asserted. “The home will be a key battleground.”

Personal health and shopping will be other areas where living services will have dramatic impacts, Nayak said.

How can businesses address living services? Nayak said the key points are: Know your customer; flex your technology; design in order to know and flex; and design to delight.

“Think about the value of the experience,” she asserted. “People expect the richness of experience, fun.”

Nayak concluded, “Prepare to atomize. Make your brand feel alive.”

Fjord was acquired in 2013 by Accenture, the global management consulting and technical services firm.

Nayak’s keynote was followed with a panel session moderated by Lucio Lanza of Lanza techVentures, a veteran technology investor and one-time executive at Daisy Systems, an early leader in electronic design automation that was acquired by Intergraph in 1990 and later absorbed into Mentor Graphics.

While the Internet connected computers and networks around the world, smartphones and other mobile devices are connecting people, Lanza noted.

Rather than the Internet of things or objects, it’s more correct to speak of “a world of things,” Lanza asserted, adding, “There are a lot of opportunities making this thing happen.”

Jack Hughes, the chairman and founder of TopCoder who also serves as chairman of the Christopher & Dana Reeves Foundation, showed part of a foundation video showing the benefits of epidural stimulation for people with paralysis.

“It’s not a cure,” he said of the technology. “These are early days. But it is extremely promising. Every one of these injuries is individual.” The foundation has supported the work of device designers, turning out the electrodes that can help paralyzed people move their limbs for the first time in years.

While the technology could deliver groundbreaking rehabilitation, “how do we make these things secure?” Hughes asked.

Mark Templeton of Scientific Ventures LLC, the co-founder of Artisan Components (acquired by ARM Holdings in 2004) and now a tech investor, talked about the Learning Thermostat from Nest Labs (now a Google subsidiary) and the business model behind the device, which can deliver data on its use to electrical utility companies to guide how and when they supply power to customers.

He urged IoT startups to “think about the business model more than the device itself.” He added, “The device is just the starting point.”

Ted Vucurevich of Enconcert, who once was the chief technology officer of Cadence Design Systems, said the IoT is bringing about a “transformation” in electronics, semiconductors, computing, and related industries. “It’s not about winning a socket,” he said, but “how you’re going to monetize the things you sell.”

He added, “There is consolidation and exploration. How can we allow these ecosystems to move forward? There’s a complete transformation coming.”

Noting his background in software, Hughes said, “When I hear ‘Internet of Things,’ I think ‘community.’ It’s a community of things. This is sort of a watershed moment.”

The panel, left to right: Ted Vucurevich, Mark Templeton, Jack Hughes, Lucio Lanza.

IoT Security, Software Are Highlighted at ARM TechCon

Friday, November 13th, 2015

thumbnail

By Jeff Dorsch, Contributing Editor

Many people are aware of the Internet of Things concept. What they want to know now is how to secure the IoT and how to develop code for it.

Plenty of vendors on hand for the ARM TechCon conference and exposition in Santa Clara, Calif. this week were offering solutions on both counts. And there were multiple presentations in the three-day conference program devoted to both subjects.

Mentor Graphics, for instance, spoke about “Use Cases for ARM TrustZone Benefits of HW-Enforced Partitioning and OS Separation.” MediaTek presented on “Secured Communication Between Devices and Clouds with LinkIt ONE and mbedTLS.” And so on.

ARM CEO Simon Segars said in his keynote address that security and trust are one of the key principles in the Internet of Things (the others being connectivity and partnership across the ecosystem). Security and trust, he asserted, must be “at every level baked into the hardware, before you start layering software on top.”

James Bruce, ARM’s director of mobile solutions, addressed the security topic at length in an interview at the conference. ARM is taking a holistic approach to security through its TrustZone technology, he said, describing it as “a great place to put [network] keys.”

With microcontrollers, the chips often used in IoT devices, TrustZone makes sure sensitive data is “inaccessible to normal software,” Bruce said. At the same time, “you want to make devices easy to update,” he added.

ARM wants to enable its worldwide ecosystem of partners to stay ahead of cyberattacks and other online dangers, according to Bruce. “That’s why we’re doing the groundwork now,” he said.

The reaction of ARM partners to the introduction of TrustZone CryptoCells and the new ARMv8-M architecture for embedded devices has been “very positive,” Bruce said, adding, “Security can’t be an afterthought.”

Ron Ih, senior manager of marketing and business development in the Security Products Group at Atmel, described standard encryption as “only a piece” of security measures. “Authentication is a key part,” he said.

Atmel was touting its Certified-ID platform at ARM TechCon, featuring the ATECC508A cryptographic co-processor. Ih cited the “made for iPhone” chips that Apple requires of its partners developing products to complement the smartphone, ensuring ecosystem control. “You either have the chip or you don’t,” he said.

“People don’t care about the devices,” Ih concluded. “They care about who the devices are connected to.”

Simon Davidmann, president and chief executive officer of Imperas Software, is a veteran of the electronic design automation field, and he brings his experience to bear in the area of embedded software development.

Software, especially for the IoT, is “getting so complex, you can’t do what you used to do,” he said. “The software world has to change. Nobody should build software without simulation.”

At the same time, simulation is “necessary but not sufficient” in software development, he said. Code developers should be paying attention to abstractions, assertions, verification, and other aspects, according to Davidmann.

“Our customers are starting to adopt virtual platforms,” he added.

Jean Labrosse, president and CEO of MIcrium, a leading provider of real-time operating system kernels and other software components, said “the industry is changing” with the onset of the Internet of Things. Multiple-core chips are entering into the mix – not only for their low-power attributes, but for the safety and security they can provide, he noted.

Jeffrey Fortin, director of product management at Wind River and a specialist in IoT platforms, spoke on the last day of the conference on “Designing for the Internet of Things: The Technology Behind the Hype.”

Wind River, now an Intel subsidiary, has been around for more than three decades, developing “an embedded operating system that could be connected to other systems,” he said.

There are two business interests driving IoT demand, according to Fortin – business optimization and business transformation. He described the IoT as “using data to feed actionable analytics.”

The foundation of the IoT is hardware and software that provides safety and security, Fortin said.

Colt McAnlis of Google (Photo by Jeff Dorsch)

In the final keynote of ARM TechCon, Google developer advocate Colt McAnlis spoke on “The Hard Things About the Internet of Things.”

IoT technology, at present, is “not optimizing the user,” he said in a frequently funny and witty presentation. Networking and battery issues are bedeviling the IoT ecosystem, he asserted.

By draining the batteries of mobile devices with near-constant signals, such as setting location via GPS, companies are imposing “a taxation system for every single thing [IoT] does,” McAnlis said. “We’re talking about how often we’re sampling. People are already realizing this sucks.”

Beacons installed in a shopping mall can bombard smartphone users with advertising and coupons, he noted, while the property management gets data on specifics of foot traffic. “Imagine this at scale,” installed on every block of San Francisco, he added.

“We have a chance to not make this a reality,” McAnlis asserted. “We need IoT technology to make this not suck for users.”

At the end of his keynote, McAnlis asked the attendees to hold up their smartphones and vow, “I solemnly agree not to screw this up.”

ARM CEO Celebrates 500 Years of Connectivity

Wednesday, November 11th, 2015

By Jeff Dorsch, Contributing Editor

“Realize that everything connects to everything else,” Leonardo da Vinci said some five centuries ago.

Simon Segars, chief executive officer of ARM Holdings, took that quotation as the theme for his ARM TechCon keynote address on Wednesday morning (November 11), which was entitled “Building Trust in a Connected World.”

ARM CEO Simon Segars

“The future is dependent on the connections we make,” Segars commented.

He reviewed the history of significant products in the 20th century – automobiles, vacuum cleaners, DVD players, et al. – and noted how their pricing was reduced through “optimizing supply chains,” he said.

In 2015, “smartphones are essentially free,” Segars said. Pulling together all the capabilities and components that go into smartphones today would cost $3.56 million in 1990, the year ARM was established, he estimated. He displayed a RadioShack advertisement from 25 years ago with a page full of consumer electronics – all of which are now contained in smartphones.

In the 21st century, “the world has moved on,” Segars observed. Modern industry involves “planetary ecosystems,” he said, enabling worldwide contributions to developing the Internet of Things.

“Let’s take the opportunity to get IoT right,” Segars said, noting its development will depend on connectivity, based on common standards; security and trust; and partnerships across the ecosystem.

Automotive vehicles, medical electronics, and “smart cities” are key areas where the IoT will find growth prospects, the ARM CEO said.

“Cars are getting smarter,” Segars said, noting that the average vehicle contains hundreds of microcontrollers. It is estimated that 40 percent of the cars in the U.S. will have Long-Term Evolution (LTE) connectivity by 2019, he added.

As he went deeper into the topic of Internet-connected cars, a fire alarm went off in the crowded Mission City Ballroom of the Santa Clara Convention Center. Segars, the son of a fireman, directed the attendees to leave the building, interrupting the keynote address.

When the alarm proved to be false, the keynote resumed, with Segars bringing on three industry executives for a panel session. They were Paul Beckwith of the Progressive Group of Insurance Companies, Coby Sella of ARM, and Balaji Yelamanchili of Symantec.

“We talk about trust,” Sella said. “You have to analyze the risk factors.”

Yelamanchili said, “A lot of times, security is an afterthought.” For the IoT, security measures must be built into the chips and systems involved, he asserted.

To prevent data leakage, “these devices and how you connect these devices are purpose-built,” he added.

Beckwith said “our brand is at risk” if everything in the IoT is not secure.

Sella noted, “We are very much at the beginning” of IoT technology.

Segars asked the panelists what IoT will look like in five years.

“We have to do our best to make sure the security is built in,” Yelamanchili said. “There are enormous opportunities out there.”

Sella said, “We will start to see horizontal play in IoT. It depends on our ability to drive this forward.”

Beckwith commented that the industry will have to “react quicker” to security challenges and data-breach episodes.

ARM debuts embedded architecture, new 64-bit processor

Tuesday, November 10th, 2015

By Jeff Dorsch, Contributing Editor

November 10, 2015 — ARM Holdings today is introducing the ARMv8-M architecture for embedded devices and the ARM Cortex-A35 64-bit processor as the company opens the annual ARM TechCon conference and exposition in Santa Clara, Calif.

Advanced RISC Machines Ltd. was established 25 years ago this month as a joint venture among Acorn Computers, Apple Computer (now Apple), and VLSI Technology. The company changed its name to ARM Ltd. in 1998 and went public as ARM Holdings on the London Stock Exchange and NASDAQ.

thumbnail

ARM CEO Simon Segars

At this week’s ARM TechCon event, attendees will hear keynote addresses by CEO Simon Segars and Chief Technology Officer Mike Muller. There will be presentations by Google, Oracle, and Twentieth Century Fox on the main stage of the conference. ARM TechCon runs through Thursday, November 12, at the Santa Clara Convention Center.

The ARMv8-M architecture is intended to address “the growing billions of endpoint devices” in the Internet of Things, says Nandan Nayampally, vice president of marketing for ARM’s CPU Group. It encompasses providing the ARM TrustZone security technology for IoT devices, which will work in concert with TrustZone CryptoCell and AMBA 5 AHB5 to secure ultra-low-power systems.

Device integrity is the goal of the embedded architecture, according to Nayampally. “We need every component along the chain to be secure,” he says.

In addition to device integrity, ARM aims to provide lifecycle security and communication security, Nayampally adds.

“The baseline for all this is trusted hardware,” Nayampally says. “TrustZone has been very successful; it’s been around for a decade.”

ARMv8-M targets Cortex-M embedded processors, he notes. The new architecture aims at “microcontrollers up to the smartphone generation and to the enterprise,” Nayampally says.

For the benefit of embedded-device developers, “you have to be real-time,” Nayampally says. “You have to be really small. We cannot compromise on that.”

ARMv8-M will be supported by a number of third-party tool suppliers, including Mentor Graphics, Micrium, Green Hills Software, and Symantec.

The ARM Cortex-A35 processor has already been licensed to multiple customers and will be found in devices by the end of next year, says Ian Smythe, director of marketing programs for the CPU Group. “Each partner will announce on their own schedule,” he adds.

The 64-bit processor is “targeted at mobile,” Smythe says. Half of smartphones shipped this year will include chips with the ARMv8-A architecture, he notes. ARM and Gartner are predicting 1 billion entry-level smartphones will ship in 2020, as the entry-level smartphone market enjoys a compound annual growth rate of 8 percent.

The Cortex-A35 consumes 10% less power than the Cortex-A7, according to Smythe, and offers performance improvements of 6 percent to 40 percent in various functions.

Compared with the Cortex-A53 processor, the Cortex-A35 has a 25 percent smaller core, 32 percent lower power consumption, and 25 percent greater efficiency, Smythe says. ARM touts the Cortex-A35 as an ultra-high-efficiency processor, suitable to succeed the Cortex-A5 and Cortex-A7 in entry-level smartphones.

“The ARM Cortex-A35 processor brings efficient, secure 64-bit processing to the next billion smartphones,” Smythe concludes.

ARM CTO looks forward and backward in keynote

Tuesday, November 10th, 2015

UPDATE 15 December 2015: Minor changes made to reflect correct ARM product nomenclature.

By Jeff Dorsch, Contributing Editor

“Innovation is still thriving in semiconductors,” said Mark Muller, chief technology officer of ARM Holdings, in a keynote address Tuesday morning (November 10) at the ARM TechCon conference and exposition in Santa Clara, Calif.

“We’ve always had constraints on what we can do,” he added. Still, “there’s an incredible amount of innovation ahead of us.”

ARM CTO Mike Muller describes the company's strategy, upside in server opportunities, and technology's march towards the IoT.

With ARM marking its 25th anniversary this month, Muller briefly reviewed the history of the company and the technology that preceded its establishment, harking back to the BBC Micro Model A/B computer of 1981 and the 1985 introduction of the ARM1 processor. The BBC Micro has ultimately led to this year’s introduction of the BBC micro:bit single-board computer, which is being provided for free to 10-year-old and 11-year-old schoolchildren in the United Kingdom.

Muller talked about ARM’s progress in getting its designs into server chips, with “multiple manufacturers” shipping ARM-based servers, he noted. Such servers are being implemented at the Barcelona Supercomputing Center in Spain and at Sandia National Laboratories, Muller said.

Moving on, Muller said, “Mobile computing has been transformed.” While the annual growth rate of mobile devices is expected to decline to 10 percent by 2020, such “not bad” growth will primarily be coming from entry-level smartphones by the end of the decade, he added.

The CTO touted “a truly remarkable product,” the ARM Cortex-A35 processor, being introduced at this week’s conference. Chips with that processor design will be able to run on less than 6 milliwatts, he said.

At the same time, Muller said of ARM’s product strategy, “It’s so much more than processors.” The company aspires to provide “all of the IP [intellectual property] you need,” he said to the designers in attendance.

Muller enthused about what he called “the product of the year,” an energy-harvesting Bluetooth Low Energy insulin pen designed by Cambridge Consultants, incorporating a Dialog Semiconductor chip. The KiCoPen concept has no battery, he noted. Using piezoelectric technology, it derives its energy from the injector cap being removed from the pen.

The ARM executive also addressed the security issue with the Internet of Things and related products. “We’re under attack in a way we never were before,” Muller said.

“How do we make a $1 microcontroller design done by people with no security experience, secure?” he asked.

ARM also introduced the TrustZone CryptoCell security technology this week, along with its ARMv8-M architecture for embedded devices.

“The hardware is the easy part,” Muller commented. With the IoT, there are familiar problems in chip and system design, “times trust,” he said.

“You have to be able to secure them,” Muller said of IoT devices. “You share that trust around you.”

Solid State Watch: June 5-11, 2015

Thursday, June 11th, 2015
YouTube Preview Image