Part of the  

Solid State Technology

  and   

The Confab

  Network

About  |  Contact

Posts Tagged ‘22nm’

The Week in Review: Dec. 20, 2013

Friday, December 20th, 2013

3DIC memory, and therefore all of 2.5/3D technology, took one step closer to full commercialization last week with the HBM joint development announcement from AMD and Hynix at the RTI 3D ASIP meeting in Burlingame, CA. Bryan Black, Sr Fellow and 3D program manager at AMD noted that while die stacking has caught on in FPGAs and image sensors “..there is nothing yet in mainstream computing CPUs, GPUs or APUs” but that “HBM (high bandwidth memory) will change this.”  Black continued,  “Getting 3D going will take a BOLD move and AMD is ready to make that move.” Black announced that AMD is co-developing HBM with SK Hynix which is currently sampling the HBM memory stacks and that AMD “…is ready to work with customers.”

ABI Research verified that Intel has a leading position in the mobile processor technology race; launching the first 22nm mobile application processor. The 22nm quad-core application processor (Intel Z3740D) was found in a Dell tablet that was recently launched for the Christmas season. “2013 saw a number of new processor launches with 32nm and 28nm technology (most from fabless companies) but Intel has used one of its core advantages [process technology] to pass them all,” Jim Mielke, VP of engineering at ABI Research, commented. “The 22nm process node used for the Z3740D is not just the smallest geometry in a mobile device today; it also introduces a new transistor. The core transistor structure used in the 22nm Z3740D is quite different than structures used in previous generations. The core transistor found in the device ABI Research analyzed has a gate that surrounds source/drain diffusion fins on three sides giving it the name tri-gate or 3D transistor.

North America-based manufacturers of semiconductor equipment posted $1.24 billion in orders worldwide in November 2013 (three-month average basis) and a book-to-bill ratio of 1.11, according to the November EMDS Book-to-Bill Report published today by SEMI.   A book-to-bill of 1.11 means that $111 worth of orders were received for every $100 of product billed for the month. “The continuing rise in equipment bookings clearly points to year-end order activity that is substantially stronger compared to one year ago,” said Denny McGuirk, president and CEO of SEMI.  ”This trend supports the current outlook showing a rebound in equipment spending for 2014.”

Soitec and CEA have renewed their partnership for the next five years. This new contract aims to support Soitec’s strategy for the electronics, solar energy and lighting markets. It will focus on engineered substrates and materials offering higher performances and energy savings at a competitive cost. As the new partnership is putting in place a powerful R&D ecosystem, time from research to product will be considerably reduced. Thanks to the strengths of CEA-Leti in electronic materials, multi-domain research and its pre-industrialization infrastructure, competitive R&D sample prototyping will be enabled thru a common platform, reducing time to market and R&D costs for Soitec and its customers.

Micron Technology, Inc. announced its collaboration with Broadcom Corporation to develop the industry’s first solution designed for customers challenged by an intrinsic DDR3 timing parameter called tFAW, or four activate window.

EUV Flare And Proximity Modeling And Model-Based Correction

Thursday, May 16th, 2013

The introduction of EUV lithography into the semiconductor fabrication process will enable a continuation of Moore’s law below the 22 nm technology node. EUV lithography will, however, introduce new and unwanted sources of patterning distortions which must be accurately modeled and corrected on the reticle. Flare caused by scattered light in the projection optics is expected to result in several nanometers of on-wafer dimensional variation, if left uncorrected. Previous work by the authors has focused on combinations of model-based and rules-based approaches to modeling and correction of flare in EUV lithography. This paper focuses on the development of an all model-based approach to compensation of both flare and proximity effects in EUV lithography. The advantages of such an approach in terms of both model and OPC accuracy will be discussed. In addition, the authors will discuss the benefits and tradeoffs associated with hybrid OPC approaches which mix both rules-based.

To view this white paper, click here.