Part of the  

Solid State Technology

  and   

The Confab

  Network

About  |  Contact

Headlines

Headlines

Germanium Junctions for CMOS

thumbnail

By Ed Korczynski, Sr. Technical Editor, Solid State Technology and SemiMD

It is nearly certain that alternate channel materials with higher mobilities will be needed to replace silicon (Si) in future CMOS ICs. The best PMOS channels are made with germanium (Ge), while there are many possible elements and compounds in R&D competition to form the NMOS channel, in part because of difficulties in forming stable n-junctions in Ge. If the industry can do NMOS with Ge then the integration with Ge PMOS would be much simpler than having to try to integrate a compound semiconductor such as gallium-arsenide or indium-phosphide.

In considering Ge channels in future devices, we must anticipate that they will be part of finFET structures. Both bulk-silicon and silicon-on-insulator (SOI) wafers will be used to build 3D finFET device structures for future CMOS ICs. Ultra-Shallow Junctions (USJ) will be needed to make contacts to channels that are nanoscale.

John Borland is a renowned expert in junction-formation technology, and now a principle with Advanced Integrated Photonics. In a Junction Formation side-conference at SEMICON West 2014, Borland presented a summary of data that had first been shown by co-author Paul Konkola at the 2014 International Conference on Ion Implant Technology. Their work on “Implant Dopant Activation Comparison Between Silicon and Germanium” provides valuable insights into the intrinsic differences between the two semiconducting materials.

P-type implants into Ge showed an interesting self-activation (seen as a decrease in of p-type dopant after implant, especially for monomer B as the dose increases.  Using 4-Point-Probe (4PP) to measure sheet-resistance (Rs), the 5E14/cm2 B-implant Rs was 190Ω/□ and at higher implant dose of 5E15/cm2 Rs was 120Ω/□. B requires temperatures >600°C for full activation in PMOS Ge channels, and generally results in minimal dopant diffusion for USJ.

Figure 1 shows a comparison between P, As, and Sb implanted dopants at 1E16/cm2 into both a Si wafer and 1µm Ge-epilayer on Si after various anneals. The sheet-resistance values for all three n-type dopants were always lower in Ge than in Si over the 625-900°C RTA range by about 5x for P and 10x for As and Sb. Another experiment to study the results for co-implants of P+Sb, P+C, and P+F using a Si-cap layer did not show any enhanced n-type dopant activation.

Fig.1: Sheet-resistance (Rs) versus RTA temperatures for P, As, and Sb implanted dopants into Ge and Si. (Source: Borland)

Prof. Saraswat of Stanford University showed in 2005—at the spring Materials Research Society meeting— that n-type activation in Ge is inherently difficult. In that same year, Borland was the lead author of an article in Solid State Technology (July 2005, p.45) entited, “Meeting challenges for engineering the gate stack”, in which the authors advocated for using a Si-cap for P implant to enable high temperature n-type dopant activation with minimal diffusion for shallow n+ Ge junctions that can be used for Ge nMOS. Now, almost 10 year later, Borland is able to show that it can be done.

Ge Channel Integration and Metrology

Nano-scale Ge channels wrapped around 3D fin structures will be difficult to form before they can be implanted. However, whether formed in a Replacement Metal Gate (RMG) or epitaxial-etchback process, one commonality is that Ge channels will need abrupt junctions to fit into shrunk device structures. Also, as device structures have continued to shrink, the junction formation challenges between “planar” devices and 3D finFET have converged since the “2D” structures now have nano-scale 3D topography.

Adam Brand, senior director of transistor technology in the Advanced Product Technology Development group of Applied Materials, explained that, “Heated beamline implants are best when the priority is precise dose and energy control without lattice damage. Plasma doping (PLAD) is best when the priority is to deliver a high dose and conformal implant.”

Ehud Tzuri, director strategic marketing in the Process Diagnostic and Metrology group at Applied Materials reminds us that control of the Ge material quality, as specified by data on the count and lengths of stacking-faults and other crystalline dislocations, could be done by X-Ray Diffraction (XRD) or by some new disruptive technology. Cross-section Transmission Electron Microscopy (X-TEM) is the definitive technology for looking at nanoscale material quality, but since it is expensive and the sample must be destroyed it cannot be used for process control.

Figure 2 shows X-TEM results for 1 µm thick Ge epi-layers after 625°C and 900°C RTA. Due to the intrinsic lattice mis-match between Ge and Si there will always be some defects at the surface, as indicated by arrows in the figure. However, stacking faults are clearly seen in the lower RTA sample, while the 900°C anneal shows no stacking-faults and so should result in superior integrated device performance.

Fig. 2: Cross-section TEM of 1µm Ge-epi after 625°C and 900°C RTA, showing great reduction in stacking-faults with the higher annealing temperature. (Source: Borland)

Borland explains that the stacking-faults in Ge channels on finFETs would protrude to the surface, and so could not be mitigated by the use of the “Aspect-Ratio Trapping” (ART) integration trick that has been investigated by imec. However, the use of a silicon-oxide cap allows for the use of 900°C RTA which is hot enough to anneal out the defects in the crystal.

Brand provides an example of why integration challenges of Ge channels include subtle considerations, “The most important consideration for USJ in the FinFET era is to scale down the channel body width to improve electrostatics. Germanium has a higher semiconductor dielectric constant than silicon so a slightly lower body width will be needed to reach the same gate length due to the capacitive coupling.”

Junction formation in Ge channels will be one of the nanoscale materials engineering challenges for future CMOS finFETs. Either XRD or some other metrology technology will be needed for control. Integration will include the need to control the materials on the top and the bottom surfaces of channels to ensure that dopant atoms activate without diffusing away. The remaining challenge is to develop the shortest RTA process possible to minimize all diffusions.

— E. K.

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Leave a Reply